The SPL transcription factor TaSPL6 negatively regulates drought stress response in wheat

被引:6
|
作者
Zhao, Yue [1 ]
He, Jinqiu [1 ]
Liu, Mengmeng [1 ]
Miao, Jingnan [1 ]
Ma, Chao [1 ]
Feng, Yajun [1 ]
Qian, Jiajun [1 ]
Li, Huanhuan [1 ]
Bi, Huihui [2 ]
Liu, Wenxuan [1 ]
机构
[1] Henan Agr Univ, Coll Life Sci, Zhengzhou 450002, Peoples R China
[2] Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Wheat; SPL; Drought stress; Transgenic; RNA-Seq; DOMAIN PROTEIN; TOLERANCE; YIELD; OVEREXPRESSION; CONTRIBUTES; DIVERGENCE; EXPRESSION; GALACTINOL; HOMOEOLOGS; FAMILY;
D O I
10.1016/j.plaphy.2023.108264
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Environmental stresses, such as heat and drought, severely affect plant growth and development, and reduce wheat yield and quality globally. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcription factors that play a critical role in regulating plant responses to diverse stresses. In this study, we cloned and characterized TaSPL6, a wheat orthologous gene of rice OsSPL6. Three TaSPL6 homoeologs are located on the long arms of chromosomes 4A, 5B, and 5D, respectively, and share more than 98% sequence identity with each other. The TaSPL6 genes were preferentially expressed in roots, and their expression levels were downregulated in wheat seedlings subjected to heat, dehydration, and abscisic acid treatments. Subcellular localization experiments showed that TaSPL6 was localized in the nucleus. Overexpression of TaSPL6-A in wheat resulted in enhanced sensitivity to drought stress. The transgenic lines exhibited higher leaf water loss, malondialdehyde and reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after drought treatment than wild-type plants. Gene silencing of TaSPL6 enhanced the drought tolerance of wheat, as reflected by better growth status. Additionally, RNA-seq and qRT-PCR analyses revealed that TaSPL6-A functions by decreasing the expression of a number of genes involved in stress responses. These findings suggest that TaSPL6 acts as a negative regulator of drought stress responses in plants, which may have major implications for understanding and enhancing crop tolerance to environmental stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A novel NAC transcription factor ZmNAC55 negatively regulates drought stress in Zea mays
    Fan, Kai
    Wu, Yuchen
    Mao, Zhijun
    Yin, Kan
    He, Yuxi
    Pan, Xinfeng
    Zhu, Xiaxiao
    Liao, Changjian
    Cui, Lili
    Jia, Qi
    Li, Zhaowei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 214
  • [2] The Wheat MYB Transcription Factor TaMYB31 Is Involved in Drought Stress Responses in Arabidopsis
    Zhao, Yue
    Cheng, Xiyong
    Liu, Xiaodan
    Wu, Huifang
    Bi, Huihui
    Xu, Haixia
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [3] The bZIP Transcription Factor GmbZIP15 Negatively Regulates Salt- and Drought-Stress Responses in Soybean
    Zhang, Man
    Liu, Yanhui
    Cai, Hanyang
    Guo, Mingliang
    Chai, Mengnan
    She, Zeyuan
    Ye, Li
    Cheng, Yan
    Wang, Bingrui
    Qin, Yuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (20) : 1 - 19
  • [4] A Novel Heat Shock Transcription Factor (ZmHsf08) Negatively Regulates Salt and Drought Stress Responses in Maize
    Wang, Jing
    Chen, Li
    Long, Yun
    Si, Weina
    Cheng, Beijiu
    Jiang, Haiyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [5] The Functions of an NAC Transcription Factor, GhNAC2-A06, in Cotton Response to Drought Stress
    Saimi, Gulisitan
    Wang, Ziyu
    Liusui, Yunhao
    Guo, Yanjun
    Huang, Gengqing
    Zhao, Huixin
    Zhang, Jingbo
    PLANTS-BASEL, 2023, 12 (21):
  • [6] Comprehensive genomic characterization of NAC transcription factor family and their response to salt and drought stress in peanut
    Yuan, Cuiling
    Li, Chunjuan
    Lu, Xiaodong
    Zhao, Xiaobo
    Yan, Caixia
    Wang, Juan
    Sun, Quanxi
    Shan, Shihua
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [7] Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance
    Peng, Yan
    Tang, Ning
    Zou, Jie
    Ran, Jing
    Chen, Xinbo
    PLANT GROWTH REGULATION, 2023, 99 (03) : 515 - 525
  • [8] The Populus MYB transcription factor PSAR1 negatively regulates salt stress and is a repressor of ABA signaling
    Fang, Qing
    Zhang, Caiyun
    Liu, Jingjie
    Zeng, Zhi
    Lu, Yanke
    JOURNAL OF PLANT INTERACTIONS, 2025, 20 (01)
  • [9] The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple
    Li, Sen
    Jing, Xiuli
    Tan, Qiuping
    Wen, Binbin
    Fu, Xiling
    Li, Dongmei
    Chen, Xiude
    Xiao, Wei
    Li, Ling
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [10] Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response
    Wang, Ying
    Cao, Shangjie
    Guan, Chunjing
    Kong, Xin
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Zhou, Yunwei
    Zhang, Yanni
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 149 : 96 - 110