Superior Energy Storage Capability and Fluorescence Negative Thermal Expansion of NaNbO3-Based Transparent Ceramics by Synergistic Optimization

被引:16
|
作者
Zeng, Xiangfu [1 ]
Lin, Jinfeng [2 ]
Chen, Yan [1 ]
Wang, Simin [2 ]
Zhou, Ping [1 ]
Yu, Fangyuan [1 ]
Wu, Xiao [1 ]
Gao, Min [1 ]
Zhao, Chunlin [1 ]
Lin, Tengfei [1 ]
Luo, Laihui [3 ]
Lin, Cong [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
[2] Tongji Univ, Sch Mat Sci & Engn, Funct Mat Res Lab, Key Lab Adv Civil Engn Mat,Minist Educ, Shanghai 201804, Peoples R China
[3] Ningbo Univ, Dept Microelect Sci & Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
cooperative optimization; energy storage; fluorescent negative thermal expansion; superparaelectric; transparent ceramics; UP-CONVERSION LUMINESCENCE; OPTICAL TRANSPARENCY; PERFORMANCE; DENSITY;
D O I
10.1002/smll.202309992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transparent dielectric ceramics are splendid candidates for transparent pulse capacitors (TPCs) due to splendid cycle stability and large power density. However, the performance and service life of TPCs at present are threatened by overheating damage caused by dielectric loss. Here, a cooperative optimization strategy of microstructure control and superparaelectric regional regulation is proposed to simultaneously achieve excellent energy storage performance and real-time temperature monitoring function in NaNbO3-based ceramics. By introducing aliovalent ions and oxides with large bandgap energy, the size of polar nanoregions is continuously reduced. Due to the combined effect of increased relaxor behavior and fine grains, excellent comprehensive performances are obtained through doping appropriate amounts of Bi, Yb, Tm, and Zr, Ta, Hf in A- and B-sites of the NaNbO3 matrix, including recoverable energy storage density (5.39 J cm(-3)), extremely high energy storage efficiency (91.97%), ultra-fast discharge time (29 ns), and superior optical transmittance (approximate to 47.5% at 736 nm). Additionally, the phenomenon of abnormal fluorescent negative thermal expansion is realized due to activation mechanism of surface phonon at high temperatures that can promote the formation of [Yb<middle dot><middle dot><middle dot>O]-Tm3+ pairs, showing great potential in real-time temperature monitoring of TPCs. This research provides ideas for developing electronic devices with multiple functionalities.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Synergistic optimization strategy enhanced the energy storage performance of NaNbO3-based relaxation antiferroelectric ceramics
    Wen, Hongjuan
    Wu, Xiusheng
    Zhou, Naiji
    Li, Hanlv
    Cao, Jufang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (09)
  • [2] Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics
    Shi, Junpeng
    Chen, Xiuli
    Sun, Congcong
    Pang, Feihong
    Chen, Hongyun
    Dong, Xiaoyan
    Zhou, Xianjie
    Wang, Kangguo
    Zhou, Huanfu
    CERAMICS INTERNATIONAL, 2020, 46 (16) : 25731 - 25737
  • [3] Superb Energy Storage Capability for NaNbO3-Based Ceramics Featuring Labyrinthine Submicro-Domains with Clustered Lattice Distortions
    Wu, Shengyang
    Fu, Bo
    Zhang, Jingji
    Du, Huiwei
    Zong, Quan
    Wang, Jiangying
    Pan, Zhongbin
    Bai, Wangfeng
    Zheng, Peng
    SMALL, 2023, 19 (45)
  • [4] Superior energy storage properties in NaNbO3-based ceramics via synergistically optimizing domain and band structures
    Yang, Weiwei
    Zeng, Huarong
    Yan, Fei
    Lin, Jinfeng
    Ge, Guanglong
    Cao, Yingbo
    Du, Wentong
    Zhao, Kunyu
    Li, Guorong
    Xie, Haijiao
    Zhai, Jiwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (21) : 11613 - 11624
  • [5] Superior energy storage performance in NaNbO3-based lead-free ceramics under low electric field
    Liu, Kun
    Peng, Ping
    Lv, Zhongqian
    Nie, Hengchang
    Wang, Genshui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (02)
  • [6] Improvement of Energy Storage Properties of NaNbO3-Based Ceramics through a Relaxation Strategy
    Jin, Zhengquan
    Wu, Xiusheng
    Shi, Sijia
    Wen, Hongjuan
    Cao, Jufang
    Zhang, Tao
    Chen, Yimu
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [7] Enhanced energy storage performance of NaNbO3-based ceramics via band and domain engineering
    Liang, Cen
    Wang, Changyuan
    Zhao, Hanyu
    Cao, Wenjun
    Huang, Xuechen
    Wang, Chunchang
    CERAMICS INTERNATIONAL, 2023, 49 (24) : 40326 - 40335
  • [8] Superior energy storage properties in lead-free NaNbO3-based relaxor antiferroelectric ceramics via a combined optimization strategy
    Liu, Huanwei
    Niu, Xiang
    Wang, Ting
    Tang, Yi
    Xu, Zihao
    Lu, Xubing
    Zhang, Xiangbin
    Zeng, Wenhan
    Xu, Mingtao
    He, Houzhu
    Jiang, Yuleng
    Gong, Weiping
    Zhao, Xiaobo
    Yao, Yingbang
    Tao, Tao
    Liang, Bo
    Lu, Sheng-Guo
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (11) : 3962 - 3971
  • [9] Improvement of energy storage properties of NaNbO3-based ceramics through the cooperation of relaxation and oxygen vacancy defects
    Luo, Guoqiang
    Li, Ang
    Zhang, Ying
    Zhang, Ganrong
    Sun, Yi
    Tu, Rong
    Shen, Qiang
    CERAMICS INTERNATIONAL, 2023, 49 (01) : 801 - 807
  • [10] High energy storage properties of NaNbO3-based relaxor antiferroelectric ceramics for capacitor applications
    Tian, Jingjing
    Cao, Yuecong
    Xu, Kun
    Zhan, Minyuan
    Zhang, Danyang
    Tian, Heng
    Zhang, Bo
    Xu, Yonghao
    MATERIALS RESEARCH BULLETIN, 2024, 169