Shock profiles of Navier-Stokes equations for compressible medium

被引:0
作者
Chang, Chueh-Hsin [1 ]
Liu, Tai-Ping [2 ,3 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Chiayi, Taiwan
[2] Inst Math Acad Sinica, Taipei, Taiwan
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Shock waves; viscous profiles; Euler and Navier-Stokes equations; SYSTEMS;
D O I
10.1142/S0219891623500157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the viscous profile of the Navier-Stokes equations for compressible media under certain sufficient local hypotheses of the constitutive relation. Our result applies to shocks of arbitrary strength and generalizes the classical work of Gilbarg for the convex constitutive relation of Bethe-Weyl.
引用
收藏
页码:499 / 515
页数:17
相关论文
共 50 条
  • [41] Decay Rates for Strong Solutions to the Compressible Navier-Stokes Equations without Heat Conductivity
    Li, Weilong
    Wang, Wenjun
    Wang, Yinghui
    Yao, Lei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
  • [42] Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation
    Duan, Ran
    Liu, Hongxia
    Zhao, Huijiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 453 - 493
  • [43] Relative entropy for compressible Navier-Stokes equations with density-dependent viscosities and applications
    Bresch, Didier
    Noble, Pascal
    Vila, Jean-Paul
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (01) : 45 - 49
  • [44] Stability of a Composite Wave of Two Viscous Shock Waves for the Full Compressible Navier-Stokes Equation
    Huang, Feimin
    Matsumura, Akitaka
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) : 841 - 861
  • [45] hp-MULTILEVEL MONTE CARLO METHODS FOR UNCERTAINTY QUANTIFICATION OF COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Beck, Andrea
    Duerrwaechter, Jakob
    Kuhn, Thomas
    Meyer, Fabian
    Munz, Claus-Dieter
    Rohde, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) : B1067 - B1091
  • [46] Entropy stability for the compressible Navier-Stokes equations with strong imposition of the no-slip boundary condition
    Gjesteland, Anita
    Svard, Magnus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
  • [47] Large-time behaviour of solutions to the outflow problem of full compressible Navier-Stokes equations
    Qin, Xiaohong
    NONLINEARITY, 2011, 24 (05) : 1369 - 1394
  • [48] Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
    Li, Lin-an
    Wang, Teng
    Wang, Yi
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (03) : 911 - 937
  • [49] CONVERGENCE RATE OF FULLY COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL BOUNDED DOMAINS
    Liang, M. I. N.
    Ou, Y. A. O. B. I. N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 1673 - 1695
  • [50] A Direct Discontinuous Galerkin Method with Interface Correction for the Compressible Navier-Stokes Equations on Unstructured Grids
    Cheng, Jian
    Yue, Huiqiang
    Yu, Shengjiao
    Liu, Tiegang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (01) : 1 - 21