Shock profiles of Navier-Stokes equations for compressible medium

被引:0
作者
Chang, Chueh-Hsin [1 ]
Liu, Tai-Ping [2 ,3 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Chiayi, Taiwan
[2] Inst Math Acad Sinica, Taipei, Taiwan
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Shock waves; viscous profiles; Euler and Navier-Stokes equations; SYSTEMS;
D O I
10.1142/S0219891623500157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the viscous profile of the Navier-Stokes equations for compressible media under certain sufficient local hypotheses of the constitutive relation. Our result applies to shocks of arbitrary strength and generalizes the classical work of Gilbarg for the convex constitutive relation of Bethe-Weyl.
引用
收藏
页码:499 / 515
页数:17
相关论文
共 50 条
  • [31] A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids
    Cheng, Jian
    Yang, Xiaoquan
    Liu, Xiaodong
    Liu, Tiegang
    Luo, Hong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 484 - 502
  • [32] LONG TIME EXISTENCE OF THE SLIGHTLY COMPRESSIBLE NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS
    Ju, Qiangchang
    Xu, Jianjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (07): : 3022 - 3045
  • [33] Vanishing Viscosity Limit of the Compressible Navier-Stokes Equations for Solutions to a Riemann Problem
    Huang, Feimin
    Wang, Yi
    Yang, Tong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) : 379 - 413
  • [34] The initial value problem for the compressible Navier-Stokes equations without heat conductivity
    Chen, Qing
    Tan, Zhong
    Wu, Guochun
    Zou, Weiyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5469 - 5490
  • [35] STABILITY OF WAVE PATTERNS TO THE INFLOW PROBLEM OF FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Qin, Xiaohong
    Wang, Yi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) : 2057 - 2087
  • [36] Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations
    Zhang YingHui
    Pan RongHua
    Tan Zhong
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2205 - 2232
  • [37] STABILITY AND DECAY RATE OF VISCOUS CONTACT WAVE TO ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Bian, Xinxiang
    Xie, Lingling
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (02) : 315 - 331
  • [38] Insensitizing controls for the Navier-Stokes equations
    Gueye, Mamadou
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (05): : 825 - 844
  • [39] A conservative, skew-symmetric finite difference scheme for the compressible Navier-Stokes equations
    Reiss, Julius
    Sesterhenn, Joern
    COMPUTERS & FLUIDS, 2014, 101 : 208 - 219
  • [40] Space-time behavior of the compressible Navier-Stokes equations with hyperbolic heat conduction
    Liu, Mengqian
    Wu, Zhigang
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (10)