Shock profiles of Navier-Stokes equations for compressible medium

被引:0
作者
Chang, Chueh-Hsin [1 ]
Liu, Tai-Ping [2 ,3 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Chiayi, Taiwan
[2] Inst Math Acad Sinica, Taipei, Taiwan
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Shock waves; viscous profiles; Euler and Navier-Stokes equations; SYSTEMS;
D O I
10.1142/S0219891623500157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the viscous profile of the Navier-Stokes equations for compressible media under certain sufficient local hypotheses of the constitutive relation. Our result applies to shocks of arbitrary strength and generalizes the classical work of Gilbarg for the convex constitutive relation of Bethe-Weyl.
引用
收藏
页码:499 / 515
页数:17
相关论文
共 50 条
  • [21] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [22] Stability of Viscous Contact Wave for Compressible Navier-Stokes Equations with a Large Initial Perturbation
    Hong, Hakho
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (01): : 191 - 212
  • [23] Decay rates to viscous contact waves for the compressible Navier-Stokes equations
    Ma, Shixiang
    Wang, Jing
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [24] CONVERGENCE RATE OF SOLUTIONS TO THE CONTACT DISCONTINUITY FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Liang, Zhilei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1907 - 1926
  • [25] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [26] Global stability of viscous contact wave for 1-D compressible Navier-Stokes equations
    Hong, Hakho
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (05) : 3482 - 3505
  • [27] SHORT WAVE-LONG WAVE INTERACTIONS FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Dias, Joao Paulo
    Frid, Hermano
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 764 - 787
  • [28] ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DENSITY OSCILLATION
    Wang, Tao
    Zhao, Huijiang
    Zou, Qingyang
    KINETIC AND RELATED MODELS, 2013, 6 (03) : 649 - 670
  • [29] AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Williams, D. M.
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 95 - 121
  • [30] Weak solutions and convergent numerical schemes of modified compressible Navier-Stokes equations
    Svard, Magnus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 288 : 19 - 51