Climate-driven ecological thresholds in China's drylands modulated by grazing

被引:66
作者
Li, Changjia [1 ,2 ]
Fu, Bojie [1 ,2 ]
Wang, Shuai [1 ,2 ]
Stringer, Lindsay C. [3 ,4 ]
Zhou, Wenxin [1 ,2 ]
Ren, Zhuobing [1 ,2 ]
Hu, Mengqi [5 ]
Zhang, Yujia [6 ]
Rodriguez-Caballero, Emilio [7 ,8 ]
Weber, Bettina [8 ,9 ]
Maestre, Fernando T. [10 ,11 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[2] Beijing Normal Univ, Inst Land Surface Syst & Sustainable Dev, Fac Geog Sci, Beijing, Peoples R China
[3] Univ York, Dept Environm & Geog, York, England
[4] Univ York, York Environm Sustainabil Inst, York, England
[5] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
[6] Beijing Normal Univ, Sch Stat, Beijing, Peoples R China
[7] Univ Almeria, Dept Agron, Almeria, Spain
[8] Max Planck Inst Chem, Multiphase Chem Dept, Mainz, Germany
[9] Karl Franzens Univ Graz, Inst Biol, Div Plant Sci, Graz, Austria
[10] Univ Alicante, Inst Multidisciplinar Estudio Medio Ramon Margalef, Alicante, Spain
[11] Univ Alicante, Dept Ecol, Alicante, Spain
基金
中国国家自然科学基金;
关键词
SEMIARID ECOSYSTEMS; ARIDITY; INTENSITY; VARIABILITY; SERVICES; SAVANNA; SHIFTS; TREND;
D O I
10.1038/s41893-023-01187-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Degradation of ecosystems can occur when certain ecological thresholds are passed below which ecosystem responses remain within 'safe ecological limits'. Ecosystems such as drylands are sensitive to both aridification and grazing, but the combined effects of such factors on the emergence of ecological thresholds beyond which ecosystem degradation occurs has yet to be quantitatively evaluated. This limits our understanding on 'safe operating spaces' for grazing, the main land use in drylands worldwide. Here we assessed how 20 structural and functional ecosystem attributes respond to joint changes in aridity and grazing pressure across China & PRIME;s drylands. Gradual increases in aridity resulted in abrupt decreases in productivity, soil fertility and plant richness. Rising grazing pressures lowered such aridity thresholds for most ecosystem variables, thus showing how ecological thresholds can be amplified by the joint effects of these two factors. We found that 44.4% of China's drylands are unsuitable for grazing due to climate change-induced aridification, a percentage that may increase to 50.8% by 2100. Of current dryland grazing areas, 8.9% exceeded their maximum allowable grazing pressure. Our findings provide important insights into the relationship between aridity and optimal grazing pressure and identify safe operating spaces for grazing across China's drylands. Understanding the synergistic effects of aridity and grazing on dryland ecosystem attributes can be important for identifying 'safe operating spaces' for grazing under an increasingly arid climate. This study uses two-dimensional ecological threshold models to assess this in China's drylands.
引用
收藏
页码:1363 / 1372
页数:23
相关论文
共 61 条
  • [1] Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015
    Abatzoglou, John T.
    Dobrowski, Solomon Z.
    Parks, Sean A.
    Hegewisch, Katherine C.
    [J]. SCIENTIFIC DATA, 2018, 5
  • [2] The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands
    Abel, Christin
    Horion, Stephanie
    Tagesson, Torbern
    De Keersmaecker, Wanda
    Seddon, Alistair W. R.
    Abdi, Abdulhakim M.
    Fensholt, Rasmus
    [J]. NATURE SUSTAINABILITY, 2021, 4 (01) : 25 - U150
  • [3] The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
    Ahlstrom, Anders
    Raupach, Michael R.
    Schurgers, Guy
    Smith, Benjamin
    Arneth, Almut
    Jung, Martin
    Reichstein, Markus
    Canadell, Josep G.
    Friedlingstein, Pierre
    Jain, Atul K.
    Kato, Etsushi
    Poulter, Benjamin
    Sitch, Stephen
    Stocker, Benjamin D.
    Viovy, Nicolas
    Wang, Ying Ping
    Wiltshire, Andy
    Zaehle, Soenke
    Zeng, Ning
    [J]. SCIENCE, 2015, 348 (6237) : 895 - 899
  • [4] [Anonymous], 2007, GRIDDED LIVESTOCK WO
  • [5] Grazing systems, ecosystem responses, and global change
    Asner, GP
    Elmore, AJ
    Olander, LP
    Martin, RE
    Harris, AT
    [J]. ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2004, 29 : 261 - 299
  • [6] Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks
    Batjes, N. H.
    [J]. GEODERMA, 2016, 269 : 61 - 68
  • [7] Global ecosystem thresholds driven by aridity
    Berdugo, Miguel
    Delgado-Baquerizo, Manuel
    Soliveres, Santiago
    Hernandez-Clemente, Rocio
    Zhao, Yanchuang
    Gaitan, Juan J.
    Gross, Nicolas
    Saiz, Hugo
    Maire, Vincent
    Lehman, Anika
    Rillig, Matthias C.
    Sole, Ricard V.
    Maestre, Fernando T.
    [J]. SCIENCE, 2020, 367 (6479) : 787 - +
  • [8] Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands
    Berdugo, Miguel
    Kefi, Sonia
    Soliveres, Santiago
    Maestre, Fernando T.
    [J]. NATURE ECOLOGY & EVOLUTION, 2017, 1 (02):
  • [9] Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND)
    Burrell, Arden L.
    Evans, Jason P.
    Liu, Yi
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 197 : 43 - 57
  • [10] Cade BS, 2003, FRONT ECOL ENVIRON, V1, P412, DOI 10.2307/3868138