Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩

被引:23
作者
Liu, Xu [1 ]
Chai, Zheng-Yi [2 ]
Li, Ya-Lun [3 ]
Cheng, Yan-Yang [2 ]
Zeng, Yue [4 ]
机构
[1] Tiangong Univ, Sch Software, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[4] Jinling Inst Technol, Sch Software Engn, Nanjing 211199, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; Multi-access edge computing; Computation offloading; Multi-objective; Reinforcement learning; ALGORITHM;
D O I
10.1016/j.ins.2023.119154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle-assisted multi-access edge computing (UAV-MEC) plays an important role in some complex environments such as mountainous and disaster areas. Computation offloading problem (COP) is one of the key issues of UAV-MEC, which mainly aims to minimize the conflict goals between energy consumption and delay. Due to the time-varying and uncertain nature of the UAV-MEC system, deep reinforcement learning is an effective method for solving the COP. Different from the existing works, in this paper, the COP in UAV-MEC system is modeled as a multi-objective Markov decision process, and a multi-objective deep reinforcement learning method is proposed to solve it. In the proposed algorithm, the scalar reward of reinforcement learning is expanded into a vector reward, and the weights are dynamically adjusted to meet different user preferences. The most important preferences are selected by non-dominated sorting, which can better maintain the previously learned strategy. In addition, the Q network structure combines Double Deep Q Network (Double DQN) with Dueling Deep Q Network (Dueling DQN) to improve the optimization efficiency. Simulation results show that the algorithm achieves a good balance between energy consumption and delay, and can obtain a better computation offloading scheme.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Machine learning-based computation offloading in multi-access edge computing: A survey
    Choudhury, Alok
    Ghose, Manojit
    Islam, Akhirul
    Yogita
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 148
  • [32] Highly Immersive Telepresence with Computation Offloading to Multi-Access Edge Computing
    Kim, Younggi
    Joo, Younghyun
    Cho, Hyoyoung
    Park, Intaik
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 860 - 862
  • [33] Deadline-Aware Task Offloading With Partially-Observable Deep Reinforcement Learning for Multi-Access Edge Computing
    Huang, Hui
    Ye, Qiang
    Zhou, Yitong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (06): : 3870 - 3885
  • [34] Computation Offloading in Resource-Constrained Multi-Access Edge Computing
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Wang, Jielei
    Li, Jie
    Zhan, Siyu
    Lu, Guoming
    Dustdar, Schahram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10665 - 10677
  • [35] A Survey on Task Offloading in Multi-access Edge Computing
    Islam, Akhirul
    Debnath, Arindam
    Ghose, Manojit
    Chakraborty, Suchetana
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 118
  • [36] Energy-efficient collaborative task offloading in multi-access edge computing based on deep reinforcement learning
    Wang, Shudong
    Zhao, Shengzhe
    Gui, Haiyuan
    He, Xiao
    Lu, Zhi
    Chen, Baoyun
    Fan, Zixuan
    Pang, Shanchen
    AD HOC NETWORKS, 2025, 169
  • [37] Multi-agent Computation Offloading in UAV Assisted MEC via Deep Reinforcement Learning
    He, Hang
    Ren, Tao
    Qiu, Yuan
    Hu, Zheyuan
    Li, Yanqi
    SMART COMPUTING AND COMMUNICATION, 2022, 13202 : 416 - 426
  • [38] Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing
    Lixiong Leng
    Jingchen Li
    Haobin Shi
    Yi’an Zhu
    Multimedia Tools and Applications, 2021, 80 : 29163 - 29175
  • [39] A DEEP REINFORCEMENT LEARNING APPROACH FOR DATA MIGRATION IN MULTI-ACCESS EDGE COMPUTING
    De Vita, Fabrizio
    Bruneo, Dario
    Puliafito, Antonio
    Nardini, Giovanni
    Virdis, Antonio
    Stea, Giovanni
    2018 ITU KALEIDOSCOPE: MACHINE LEARNING FOR A 5G FUTURE (ITU K), 2018,
  • [40] Adaptive Computation Offloading Policy for Multi-Access Edge Computing in Heterogeneous Wireless Networks
    Ke, Hongchang
    Wang, Hui
    Sun, Weijia
    Sun, Hongbin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (01): : 289 - 305