Recovered cobalt-nickel sulfide from spent lithium-ion batteries as an advanced anode material toward sodium-ion batteries

被引:16
|
作者
Li, Zhiwei [1 ]
Yang, Yuxiao [1 ]
Wen, Bo [1 ]
Liu, Xiaofeng [1 ]
Wang, Yajun [2 ]
Du, Fan [2 ]
Ma, Mingming [2 ]
Li, Long [1 ]
Yang, Guorui [1 ]
Ding, Shujiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Engn Res Ctr Energy Storage Mat & Devices, Enterprise Joint Res Ctr Power Battery Recycling &, Four Joint Subjects One Union Sch,Dept Appl Chem,S, Xian 710049, Peoples R China
[2] Shaanxi Yulin Energy Grp Energy & Chem Res Inst Co, Yulin 719000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium-ion batteries; Recovery; Bimetallic sulfide solid solution; Co0; 11Ni0; 89S@NC composite; Sodium-ion batteries; Anode; POROUS CARBON; CATHODE MATERIALS; NANOPARTICLES; TECHNOLOGIES; EFFICIENT;
D O I
10.1016/j.jallcom.2023.170328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Explosive growth of the electric vehicle market has led to a substantial accumulation of spent lithium-ion batteries (LIBs), causing significant environmental pollution and the wastage of precious metal resources. Thus, we developed a simple hydrothermal method to convert the spent LiNi0.8Co0.1Mn0.1O2 (NMC-811) cathode into CoNi-MOF. After the subsequent sulfidation process, waxberry-like Co0.11Ni0.89S@N-doped carbon composites (Co0.11Ni0.89S@NC), as a bimetallic sulfide solid solution, can be successfully synthesized to serve as high-performance anode materials for sodium-ion batteries (SIBs). The waxberry-like structure and strong S-C bonds between the carbon matrix and transition metal sulfides ensure the structural sta-bility of the material during the cycle. Besides, the coexistence of Co and Ni in the bimetallic sulfide solid solution generates abundant lattice defects and modifies the electronic structures that significantly improve the charge transfer ability and Na+ diffusivity. The as-prepared Co0.11Ni0.89S@NC exhibits a high specific capacity of 622 mAh g-1 at 200 mA g-1, outstanding rate capacity of 370 mAh g-1 at 5000 mA g-1 and good cycling stability (330 mAh g-1 after 1500 cycles at 5000 mA g-1). This study presents a promising approach for the recycling of spent LIBs into high-performance anodes for SIBs, thus achieving the transformation of waste into valuable resources.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nickel cobalt sulfide Nanotube Array on Nickel Foam as Anode Material for Advanced Lithium-Ion Batteries
    Yu, D. J.
    Yuan, Y. F.
    Zhang, D.
    Yin, S. M.
    Lin, J. X.
    Rong, Z.
    Yang, J. L.
    Chen, Y. B.
    Guo, S. Y.
    ELECTROCHIMICA ACTA, 2016, 198 : 280 - 286
  • [2] Synthesis and electrochemical properties of nickel sulfide/carbon composite as anode material for lithium-ion and sodium-ion batteries
    Lee, Yeon-Ju
    Reddy, B. S.
    Hong, Hyeon-A
    Kim, Ki-Won
    Cho, Seong-Jin
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Kwon-Koo
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16883 - 16895
  • [3] From spent lithium-ion batteries to high performance sodium-ion batteries: a case study
    Lei, Yu
    Zhang, Jiakui
    Chen, Xianghong
    Min, Wenlu
    Wang, Rui
    Yan, Ming
    Xu, Jiantie
    MATERIALS TODAY ENERGY, 2022, 26
  • [4] A Brief Overview of Silicon Nanoparticles as Anode Material: A Transition from Lithium-Ion to Sodium-Ion Batteries
    Fereydooni, Alireza
    Yue, Chenghao
    Chao, Yimin
    SMALL, 2024, 20 (17)
  • [5] Anode Material Synthesized from Red Phosphorus and Germanium Nanowires for Lithium-Ion and Sodium-Ion Batteries
    Kulova, Tatiana
    Gryzlov, Dmitri
    Skundin, Alexander
    Gavrilin, Ilia
    Kudryashova, Yulia
    Pokryshkin, Nicolai
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (12):
  • [6] Bimetallic sulfide microflowers as an advanced anode for sodium-ion batteries
    Zhou, Hepeng
    Zhang, Yongbing
    Cao, Yijun
    Zhou, Xiaowen
    MATERIALS LETTERS, 2019, 238 : 222 - 225
  • [7] Anode carbonaceous material recovered from spent lithium-ion batteries in electric vehicles for environmental application
    Nguyen, Thi-Hai Anh
    Oh, Seok-Young
    WASTE MANAGEMENT, 2021, 120 : 755 - 761
  • [8] Semi-hydrogenated SiB: A promising anode material for lithium-ion and sodium-ion batteries
    Bahrami, Mina
    Shayeganfar, Farzaneh
    Mirabbaszadeh, Kavoos
    Ramazani, Ali
    ACTA MATERIALIA, 2022, 239
  • [9] Semi-hydrogenated SiB: A promising anode material for lithium-ion and sodium-ion batteries
    Bahrami, Mina
    Shayeganfar, Farzaneh
    Mirabbaszadeh, Kavoos
    Ramazani, Ali
    Acta Materialia, 2022, 239
  • [10] Role of moderate strain engineering in Nickel Sulfide anode for advanced sodium-ion batteries
    Khan, Rashid
    Yan, Wenjun
    Ahmad, Waqar
    Wan, Zhengwei
    Hussain, Shabab
    Zeb, Akif
    Saleem, Muhammad Farooq
    Ling, Min
    Liang, Chengdu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 963