Domain generalization in nematode classification

被引:0
|
作者
Zhu, Yi [1 ,2 ]
Zhuang, Jiayan [2 ]
Ye, Sichao [2 ]
Xu, Ningyuan [2 ]
Xiao, Jiangjian [2 ]
Gu, Jianfeng [3 ]
Fang, Yiwu [3 ]
Peng, Chengbin [1 ,4 ]
Zhu, Ying [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Ind Technol, Ningbo, Peoples R China
[3] Ningbo Entry Exit Inspect & Quarantine Bur, Ctr Tech, Ningbo, Peoples R China
[4] Ningbo Univ, Ningbo, Peoples R China
关键词
Deep learning; Domain generalization; Metric learning; Nematode classification; BURSAPHELENCHUS-XYLOPHILUS NEMATODA; IDENTIFICATION; DNA;
D O I
10.1016/j.compag.2023.107710
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nematode images captured by different microscopes may appear differently in terms of image color and image quality, resulting in these images laying in different learning domains. This can negatively impact nematode classification via deep learning. In this paper, we propose a local structure invariance guided (LSIG) domain generalization approach to enhance the model generalization of nematode local regions in unseen domains. First, a style transfer method is introduced to synthesize new domain image samples from the source domain. Unlike in the original input images, the color information of the synthetic images is changed, but their structural information is retained. Then, a metric learning strategy is designed to determine the cross-domain invariant structural representation between the source and new domains by pairwise learning. Each class is then effectively clustered, and a better decision boundary is determined to improve the model generalization. Overall, we demonstrate the effectiveness and robustness of the method on binary-class and multi-class classification tasks on diverse nematode datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization
    Jeon, Seogkyu
    Hong, Kibeom
    Lee, Pilhyeon
    Lee, Jewook
    Byun, Hyeran
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 22 - 31
  • [22] Mitosis domain generalization in histopathology images - The MIDOG
    Aubreville, Marc
    Stathonikos, Nikolas
    Bertram, Christof A.
    Klopfleisch, Robert
    ter Hoeve, Natalie
    Ciompi, Francesco
    Wilm, Frauke
    Marzahl, Christian
    Donovan, Taryn A.
    Maier, Andreas
    Breen, Jack
    Ravikumar, Nishant
    Chung, Youjin
    Park, Jinah
    Nateghi, Ramin
    Pourakpour, Fattaneh
    Fick, Rutger H. J.
    Ben Hadj, Saima
    Jahanifar, Mostafa
    Shephard, Adam
    Dexl, Jakob
    Wittenberg, Thomas
    Kondo, Satoshi
    Lafarge, Maxime W.
    Koelzer, Viktor H.
    Liang, Jingtang
    Wang, Yubo
    Long, Xi
    Liu, Jingxin
    Razavi, Salar
    Khademi, April
    Yang, Sen
    Wang, Xiyue
    Erber, Ramona
    Klang, Andrea
    Lipnik, Karoline
    Bolfa, Pompei
    Dark, Michael J.
    Wasinger, Gabriel
    Veta, Mitko
    Breininger, Katharina
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [23] TCX: Texture and channel swappings for domain generalization
    Choi, Jaehyun
    Seong, Hyun Seok
    Park, Sanguk
    Heo, Jae-Pil
    PATTERN RECOGNITION LETTERS, 2023, 175 : 74 - 80
  • [24] Mitosis domain generalization in histopathology images - The MIDOG
    Aubreville, Marc
    Stathonikos, Nikolas
    Bertram, Christof A.
    Klopfleisch, Robert
    ter Hoeve, Natalie
    Ciompi, Francesco
    Wilm, Frauke
    Marzahl, Christian
    Donovan, Taryn A.
    Maier, Andreas
    Breen, Jack
    Ravikumar, Nishant
    Chung, Youjin
    Park, Jinah
    Nateghi, Ramin
    Pourakpour, Fattaneh
    Fick, Rutger H. J.
    Ben Hadj, Saima
    Jahanifar, Mostafa
    Shephard, Adam
    Dexl, Jakob
    Wittenberg, Thomas
    Kondo, Satoshi
    Lafarge, Maxime W.
    Koelzer, Viktor H.
    Liang, Jingtang
    Wang, Yubo
    Long, Xi
    Liu, Jingxin
    Razavi, Salar
    Khademi, April
    Yang, Sen
    Wang, Xiyue
    Erber, Ramona
    Klang, Andrea
    Lipnik, Karoline
    Bolfa, Pompei
    Dark, Michael J.
    Wasinger, Gabriel
    Veta, Mitko
    Breininger, Katharina
    MEDICAL IMAGE ANALYSIS, 2023, 84
  • [25] DAWN: Domain Generalization Based Network Alignment
    Gao, Shuai
    Zhang, Zhongbao
    Su, Sen
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 878 - 888
  • [26] Joint Variational Inference Network for domain generalization
    Chu, Jun-Zheng
    Pan, Bin
    Xu, Xia
    Shi, Tian-Yang
    Shi, Zhen-Wei
    Li, Tao
    PATTERN RECOGNITION, 2024, 154
  • [27] Domain Generalization via Feature Variation Decorrelation
    Liu, Chang
    Wang, Lichen
    Li, Kai
    Fu, Yun
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1683 - 1691
  • [28] Domain Generalization for Robust MS Lesion Segmentation
    Zhang, Huahong
    Li, Hao
    Larson, Kathleen
    Hett, Kilian
    Oguz, Ipek
    MEDICAL IMAGING 2023, 2023, 12464
  • [29] Adversarial decoupling domain generalization network for cross-scene hyperspectral image classification
    Zhao, Hanqing
    Lin, Lianlei
    Wang, Junkai
    Gao, Sheng
    Zhang, Zongwei
    KNOWLEDGE-BASED SYSTEMS, 2025, 318
  • [30] DGM-DR: Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification
    Matsun, Aleksandr
    Mohamed, Dana O.
    Chokuwa, Sharon
    Ridzuan, Muhammad
    Yaqub, Mohammad
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023, 2024, 14293 : 115 - 125