The NAC transcription factor family in Eucommia ulmoides: Genome-wide identification, characterization, and network analysis in relation to the rubber biosynthetic genes

被引:7
|
作者
Zhang, Shuwen [1 ,2 ,3 ,4 ]
Xu, Tingting [1 ,2 ,3 ,4 ]
Ren, Yongyu [1 ,2 ,3 ,4 ]
Song, Lianjun [5 ]
Liu, Zhao [1 ,2 ,3 ,4 ]
Kang, Xiangyang [1 ,2 ,3 ,4 ]
Li, Yun [1 ,2 ,3 ,4 ]
机构
[1] Beijing Forestry Univ, State Key Lab Tree Genet & Breeding, Beijing, Peoples R China
[2] Beijing Forestry Univ, Coll Biol Sci & Technol, Natl Engn Res Ctr Tree Breeding & Ecol Restorat, Beijing, Peoples R China
[3] Beijing Forestry Univ, Key Lab Genet & Breeding Forest Trees & Ornamental, Minist Educ, Beijing, Peoples R China
[4] Beijing Forestry Univ, Beijing Lab Urban & Rural Ecol Environm, Beijing, Peoples R China
[5] Weixian Forestry Cultivat Base Super Species, Weixian Eucommia Natl Forest Tree Germplasm Reposi, Xingtai, Hebei, Peoples R China
来源
关键词
Eucommia ulmoides; NAC transcription factor; gene family; gene expression; Eucommia rubber (Eu-rubber); hormone response; TISSUE-SPECIFIC GENES; EXPRESSION ANALYSIS; COMPREHENSIVE ANALYSIS; CITRULLUS-COLOCYNTHIS; FUNCTIONAL-ANALYSIS; CONSERVED DOMAIN; SALT STRESS; EVOLUTION; DEHYDRATION; PROTEIN;
D O I
10.3389/fpls.2023.1030298
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The NAC transcription factor family is a large plant gene family, participating in plant growth and development, secondary metabolite synthesis, biotic and abiotic stresses responses, and hormone signaling. Eucommia ulmoides is a widely planted economic tree species in China that can produce trans-polyisoprene: Eucommia rubber (Eu-rubber). However, genome-wide identification of the NAC gene family has not been reported in E. ulmoides. In this study, 71 NAC proteins were identified based on genomic database of E. ulmoides. Phylogenetic analysis showed that the EuNAC proteins were distributed in 17 subgroups based on homology with NAC proteins in Arabidopsis, including the E. ulmoides-specific subgroup Eu_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 7, and multitudinous EuNAC genes contained two or three exons. Chromosomal location analysis revealed that the EuNAC genes were unevenly distributed on 16 chromosomes. Three pairs of genes of tandem duplicates genes and 12 segmental duplications were detected, which indicated that segmental duplications may provide the primary driving force of expansion of EuNAC. Prediction of cis-regulatory elements indicated that the EuNAC genes were involved in development, light response, stress response and hormone response. For the gene expression analysis, the expression levels of EuNAC genes in various tissues were quite different. To explore the effect of EuNAC genes on Eu-rubber biosynthesis, a co-expression regulatory network between Eu-rubber biosynthesis genes and EuNAC genes was constructed, which indicated that six EuNAC genes may play an important role in the regulation of Eu-rubber biosynthesis. In addition, this six EuNAC genes expression profiles in E. ulmoides different tissues were consistent with the trend in Eu-rubber content. Quantitative real-time PCR analysis showed that EuNAC genes were responsive to different hormone treatment. These results will provide a useful reference for further studies addressing the functional characteristics of the NAC genes and its potential role in Eu-rubber biosynthesis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The MYB Transcription Factor Family in Eucommia ulmoides: Genome-Wide Identification, Characterization, and Network Analysis in Relation to the Rubber Biosynthetic Genes
    Hu, Xiaotong
    Li, Yun
    Xia, Yufei
    Ma, Yanjun
    FORESTS, 2023, 14 (10):
  • [2] Genome-Wide Identification and Expression Analysis of the ARF Gene Family in Eucommia ulmoides
    Liu M.
    Li L.
    Ye J.
    Zhou X.
    Li Z.
    Fan R.
    Xu J.
    Linye Kexue/Scientia Silvae Sinicae, 2021, 57 (03): : 170 - 180
  • [3] Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava
    Hu, Wei
    Wei, Yunxie
    Xia, Zhiqiang
    Yan, Yan
    Hou, Xiaowan
    Zou, Meiling
    Lu, Cheng
    Wang, Wenquan
    Peng, Ming
    PLOS ONE, 2015, 10 (08):
  • [4] Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple
    He, Qing
    Liu, Yanhui
    Zhang, Man
    Bai, Mengyan
    Priyadarshani, S. V. G. N.
    Chai, Mengnan
    Chen, Fangqian
    Huang, Youmei
    Liu, Liping
    Cai, Hanyang
    Qin, Yuan
    TROPICAL PLANT BIOLOGY, 2019, 12 (04) : 255 - 267
  • [5] Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple
    Qing He
    Yanhui Liu
    Man Zhang
    Mengyan Bai
    S. V. G. N. Priyadarshani
    Mengnan Chai
    Fangqian Chen
    Youmei Huang
    Liping Liu
    Hanyang Cai
    Yuan Qin
    Tropical Plant Biology, 2019, 12 : 255 - 267
  • [6] Genome-Wide Identification and Genetic Characterization of Eucommia ulmoides NAC Family Genes and Functional Analysis of EuNAC9 in Relieving Mn2+ Stress
    Zhan, Niheng
    Zhao, Ziyi
    Ren, Lingyan
    Yang, Fuxin
    Zhang, Chuhan
    Qin, Lijun
    Gong, Xian
    JOURNAL OF PLANT BIOLOGY, 2024, 67 (06) : 449 - 466
  • [7] Genome-wide analysis of NAC transcription factor family in rice
    Nuruzzaman, Mohammed
    Manimekalai, Ramaswamy
    Sharoni, Akhter Most
    Satoh, Kouji
    Kondoh, Hiroaki
    Ooka, Hisako
    Kikuchi, Shoshi
    GENE, 2010, 465 (1-2) : 30 - 44
  • [8] Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum
    Zhang, Yujuan
    Li, Donghua
    Wang, Yanyan
    Zhou, Rong
    Wang, Linhai
    Zhang, Yanxin
    Yu, Jingyin
    Gong, Huihui
    You, Jun
    Zhang, Xiurong
    PLOS ONE, 2018, 13 (06):
  • [9] Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera
    Song, Heyun
    Liu, Yanling
    Dong, Gangqiang
    Zhang, Minghua
    Wang, Yuxin
    Xin, Jia
    Su, Yanyan
    Sun, Heng
    Yang, Mei
    FRONTIERS IN GENETICS, 2022, 13
  • [10] Genome-Wide Identification, Characterization, and Expression Analysis of the NAC Transcription Factor in Chenopodium quinoa
    Li, Feng
    Guo, Xuhu
    Liu, Jianxia
    Zhou, Feng
    Liu, Wenying
    Wu, Juan
    Zhang, Hongli
    Cao, Huifen
    Su, Huanzhen
    Wen, Riyu
    GENES, 2019, 10 (07):