A Poisson-Nernst-Planck single ion channel model and its effective finite element solver

被引:4
|
作者
Xie, Dexuan [1 ]
Chao, Zhen [2 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Poisson -Nernst -Planck equations; Finite element method; Single ion channel; Potassium channel; Electric current calculation; MOLECULAR-DYNAMICS; K+ CHANNEL; SELECTIVITY FILTER; POTASSIUM CHANNEL; CONDUCTION; PERMEATION; MEMBRANE;
D O I
10.1016/j.jcp.2023.112043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the "open" state. Its se-lectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion chan-nel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crys-tallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-ment solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Electrochemistry of Symmetrical Ion Channel: A Three-Dimensional Nernst-Planck-Poisson Model
    Bozek, B.
    Lewenstam, A.
    Tkacz-Smiech, K.
    Danielewski, M.
    SYMPOSIUM IN HONOR OF RICHARD BUCK, 2014, 61 (15): : 11 - 20
  • [42] A coarse-grained Poisson-Nernst-Planck model for polyelectrolyte-modified nanofluidic diodes
    Li, Zhe
    Mao, Chaowu
    Cao, Liuxuan
    Miao, Huifang
    Li, Lijuan
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [43] BOUNDARY LAYER EFFECTS ON IONIC FLOWS VIA POISSON-NERNST-PLANCK SYSTEMS WITH NONUNIFORM ION SIZES
    Chen, Jianing
    Zhang, Mingji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 6197 - 6216
  • [44] ION TRANSPORT IN DIPOLAR MEDIUM I: A LOCAL DIELECTRIC POISSON--NERNST--PLANCK/POISSON--BOLTZMANN MODEL
    Gui, Sheng
    Lu, Benzhuo
    Yu, Weilin
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (05) : 2110 - 2131
  • [45] Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels
    Liu, Jinn-Liang
    Eisenberg, Bob
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [46] One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species
    Liu, Weishi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 428 - 451
  • [47] Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady-State Poisson-Nernst-Planck Equations
    Ding, Jie
    Sun, Hui
    Wang, Zhongming
    Zhou, Shenggao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (05) : 1549 - 1572
  • [48] Modeling of electrokinetic processes by finite element integration of the Nernst-Planck-Poisson system of equations
    Paz-Garcia, Juan Manuel
    Johannesson, Bjorn
    Ottosen, Lisbeth M.
    Ribeiro, Alexandra B.
    Miguel Rodriguez-Maroto, Jose
    SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 79 (02) : 183 - 192
  • [49] QUALITATIVE PROPERTIES OF ZERO-CURRENT IONIC FLOWS VIA POISSON-NERNST-PLANCK SYSTEMS WITH NONUNIFORM ION SIZES
    Zhang, Mingji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 6989 - 7019
  • [50] A computational study of ion conductance in the KcsA K+ channel using a Nernst-Planck model with explicit resident ions
    Jung, Yong-Woon
    Lu, Benzhuo
    Mascagni, Michael
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (21)