A Poisson-Nernst-Planck single ion channel model and its effective finite element solver

被引:4
|
作者
Xie, Dexuan [1 ]
Chao, Zhen [2 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Poisson -Nernst -Planck equations; Finite element method; Single ion channel; Potassium channel; Electric current calculation; MOLECULAR-DYNAMICS; K+ CHANNEL; SELECTIVITY FILTER; POTASSIUM CHANNEL; CONDUCTION; PERMEATION; MEMBRANE;
D O I
10.1016/j.jcp.2023.112043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the "open" state. Its se-lectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion chan-nel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crys-tallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-ment solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] MODIFIED POISSON-NERNST-PLANCK MODEL WITH ACCURATE COULOMB CORRELATION IN VARIABLE MEDIA
    Liu, Pei
    Ji, Xia
    Xu, Zhenli
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (01) : 226 - 245
  • [32] MODIFIED POISSON-NERNST-PLANCK MODEL WITH COULOMB AND HARD-SPHERE CORRELATIONS
    Ma, Manman
    Xu, Zhenli
    Zhang, Liwei
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (04) : 1645 - 1667
  • [33] Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore
    Bolintineanu, Dan S.
    Sayyed-Ahmad, Abdallah
    Davis, H. Ted
    Kaznessis, Yiannis N.
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (01)
  • [34] ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Liu, Ya
    Liu, Yang
    Shu, Shi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 731 - 770
  • [35] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112
  • [36] A MODIFIED POISSON-NERNST-PLANCK MODEL WITH EXCLUDED VOLUME EFFECT: THEORY AND NUMERICAL IMPLEMENTATION
    Siddiqua, Farjana
    Wang, Zhongming
    Zhou, Shenggao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (01) : 251 - 271
  • [37] An analysis of ion channels in time-varying fields by the generalized Poisson-Nernst-Planck theory
    Zhou, Shu-Ang
    Uesaka, Mitsuru
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2009, 29 (01) : 25 - 36
  • [38] Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
    Klika, Vaclav
    Gaffney, Eamonn A.
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [39] Parallel simulation of the POISSON-NERNST-PLANCK corrosion model with an algebraic flux correction method
    Shariati, Mohamadreza
    Weber, Wolfgang E.
    Hoeche, Daniel
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2022, 206
  • [40] Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson-Nernst-Planck (PNP) model
    Wang, Jingtao
    Zhang, Minghui
    Zhai, Jin
    Jiang, Lei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (01) : 23 - 32