A Poisson-Nernst-Planck single ion channel model and its effective finite element solver

被引:4
|
作者
Xie, Dexuan [1 ]
Chao, Zhen [2 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Poisson -Nernst -Planck equations; Finite element method; Single ion channel; Potassium channel; Electric current calculation; MOLECULAR-DYNAMICS; K+ CHANNEL; SELECTIVITY FILTER; POTASSIUM CHANNEL; CONDUCTION; PERMEATION; MEMBRANE;
D O I
10.1016/j.jcp.2023.112043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the "open" state. Its se-lectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion chan-nel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crys-tallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-ment solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Hao, Tingting
    Ma, Manman
    Xu, Xuejun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [22] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [23] EXISTENCE THEORY FOR A POISSON-NERNST-PLANCK MODEL OF ELECTROPHORESIS
    Bedin, Luciano
    Thompson, Mark
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 157 - 206
  • [24] POISSON-NERNST-PLANCK (PNP) THEORY OF AN OPEN IONIC CHANNEL
    EISENBERG, R
    CHEN, DP
    BIOPHYSICAL JOURNAL, 1993, 64 (02) : A22 - A22
  • [25] Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel
    Hadjadj, L.
    Hamdache, K.
    Hamroun, D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (15) : 1794 - 1806
  • [26] Poisson-Nernst-Planck systems for ion channels with permanent charges
    Eisenberg, Bob
    Liu, Weishi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1932 - 1966
  • [27] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [28] Mixed Finite Element Method for Modified Poisson-Nernst-Planck/Navier-Stokes Equations
    He, Mingyan
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [29] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [30] Primal-mixed finite element methods for the coupled Biot and Poisson-Nernst-Planck equations
    Gatica, Gabriel N.
    Inzunza, Cristian
    Ruiz-Baier, Ricardo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 186 : 53 - 83