An improved NeQuick-G global ionospheric TEC model with a machine learning approach

被引:2
作者
Sivakrishna, K. [1 ]
Ratnam, D. Venkata [1 ]
Sivavaraprasad, Gampala [1 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Guntur 522502, Andhra Prades, India
关键词
GNSS; Machine learning; Support vector regression; Ionosphere; Total electron content; NeQuick-G; CODEGIM; SUPPORT VECTOR MACHINE;
D O I
10.1007/s10291-023-01426-4
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The advancements in computational resources and Artificial Intelligence (AI) technological tools can predict Global Ionospheric Maps (GIMs). The prediction of GIMs certainly helps the Global Navigation Satellite System (GNSS) users with ionospheric corrections in advance. Machine Learning algorithms are prominent in predicting the complex dynamics of ionospheric space weather over a global scale through the Total Electron Content (TEC) data. The TEC predictions of NeQuick-G single-frequency GNSS Ionospheric Correction Algorithm (ICA) of the Galileo satellite navigation system are reasonable globally. The VTEC time-series data derived from NeQuick-G and CODEGIMs TEC maps data are analyzed from January 1, 2020, to December 11, 2020. An improved version of the NeQuick-G model with Center for Orbit Determination in Europe (CODE)-CODEGIM TEC data and Support Vector Regression (SVR) machine learning model is the proposed ML-aided NeQuick-G ionospheric model. This technique trains the residuals of TEC between CODEGIM and NeQuick-G models data to obtain grid residual TEC maps like CODEGIM. The ML model has aided the NeQuick-G model in reducing RMSE errors up to 4.36 TECU. The proposed research helps to estimate ionospheric corrections for the single-frequency GNSS user community.
引用
收藏
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1999, MAPPING PREDICTING E
[2]   Using Support Vector Machine (SVM) and Ionospheric Total Electron Content (TEC) Data for Solar Flare Predictions [J].
Asaly, Saed ;
Gottlieb, Lee-Ad ;
Reuveni, Yuval .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :1469-1481
[3]   Ground- and space-based GPS data ingestion into the NeQuick model [J].
Brunini, C. ;
Azpilicueta, F. ;
Gende, M. ;
Camilion, E. ;
Aragon-Angel, A. ;
Hernandez-Pajares, M. ;
Juan, M. ;
Sanz, J. ;
Salazar, Dagoberto .
JOURNAL OF GEODESY, 2011, 85 (12) :931-939
[4]   Neural network based model for global Total Electron Content forecasting [J].
Cesaroni, Claudio ;
Spogli, Luca ;
Aragon-Angel, Angela ;
Fiocca, Michele ;
Dear, Varuliator ;
De Franceschi, Giorgiana ;
Romano, Vincenzo .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2020, 10
[5]   Diurnal specification of the ionospheric f0F2 parameter using a support vector machine [J].
Chen, Chun ;
Wu, Zhen-Sen ;
Ban, Pan-Pan ;
Sun, Shu-Ji ;
Xu, Zheng-Wen ;
Zhao, Zhen-Wei .
RADIO SCIENCE, 2010, 45
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]   The IGS VTEC maps: a reliable source of ionospheric information since 1998 [J].
Hernandez-Pajares, M. ;
Juan, J. M. ;
Sanz, J. ;
Orus, R. ;
Garcia-Rigo, A. ;
Feltens, J. ;
Komjathy, A. ;
Schaer, S. C. ;
Krankowski, A. .
JOURNAL OF GEODESY, 2009, 83 (3-4) :263-275
[8]   Forecasting Global Ionospheric TEC Using Deep Learning Approach [J].
Liu, Lei ;
Zou, Shasha ;
Yao, Yibin ;
Wang, Zihan .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2020, 18 (11)
[9]   Implementation of Hybrid Ionospheric TEC Forecasting Algorithm Using PCA-NN Method [J].
Mallika, I. Lakshmi ;
Ratnam, D. Venkata ;
Ostuka, Yuichi ;
Sivavaraprasad, G. ;
Raman, Saravana .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) :371-381
[10]   Performance analysis of Neural Networks with IRI-2016 and IRI-2012 models over Indian low-latitude GPS stations [J].
Mallika, Lakshmi, I ;
Ratnam, D. Venkata ;
Raman, Saravana ;
Sivavaraprasad, G. .
ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (07)