In this paper, by using variational methods we investigate theexistence of solutions for the following system of elliptic equations??? - delta(g)u+a(x)u+b(x)v = (alpha)/(2 & lowast;)f(x)u|u|(alpha-2)|v|(beta) in M, -delta(g)v+b(x)u+c(x)v = (beta)/(2 & lowast;)f(x)v|v|(beta-2)|u|(alpha) in M,where (M,g) is a smooth closed Riemannian manifold of dimension n >= 3,delta gis the Laplace-Beltrami operator, a, b and care functions Holdercontinuous in M,f is a smooth function and alpha > 1,beta > 1aretworealnumbers such that alpha + beta = 2 & lowast;,where 2(& lowast; )= 2n/(n-2) denotes the critical Sobolev exponent. We get these results by assuming su?cient conditions on the function h=(alpha) /(2)& lowast; a+(2 root alpha beta)/(2)& lowast; b+(beta)/(2)& lowast;crelated to the linear geometric potential (n-2)/R-4(n-1) (g), where R-g is the scalar curvature associated to the metric g.
机构:
China West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R ChinaChina West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R China
Zhou, Xiu
Li, Hong-Ying
论文数: 0引用数: 0
h-index: 0
机构:
China West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R ChinaChina West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R China
Li, Hong-Ying
Liao, Jia-Feng
论文数: 0引用数: 0
h-index: 0
机构:
China West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R China
China West Normal Univ, Coll Math Educ, Nanchong 637009, Sichuan, Peoples R ChinaChina West Normal Univ, Sch Math & Informat, Nanchong 637009, Sichuan, Peoples R China
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Xu, Fanheng
Wang, Lifei
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Wang, Lifei
Sun, Yuhua
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
Bisci, Giovanni Molica
Secchi, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 55, I-20125 Milan, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
机构:
South Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R ChinaSouth Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Kang, Dongsheng
Liu, Mengru
论文数: 0引用数: 0
h-index: 0
机构:
South Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R ChinaSouth Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Liu, Mengru
Xu, Liangshun
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaSouth Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China