Hollow fiber nanoporous membrane contactors for evaporative heat exchange and desalination

被引:8
|
作者
Poyarkov, A. A. [1 ]
Petukhov, D. I. [2 ]
Eliseev, A. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Dept Mat Sci, Moscow, Russia
[2] Lomonosov Moscow State Univ, Chem Dept, Moscow, Russia
关键词
Evaporation desalination; Polypropylene membrane; Graphene oxide; Seawater desalination; Heat exchange; Humidity; MASS-TRANSFER; COOLING SYSTEM; LIQUID; AIR; FLOW; EXTRACTION; SEPARATION;
D O I
10.1016/j.desal.2022.116366
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper reports the performance of nanoporous polypropylene membrane contactors in water evaporative transfer processes, depending on membrane packing density, flow, and temperature conditions. The membrane evaporator's heat and mass transfer efficiency were evaluated in a wide range of partial pressure gradients and gas phase Reynolds numbers. A protocol for simple evaluation of evaporative heat flux to the heat exchange flux is introduced to reveal the efficiency of mass-to-heat transfer. It has been shown the evaporation efficiency significantly depends on gas flow conditions, increasing at Re - 30 and exceeding 4.6 kg x m-2xh- 1 (3.0 kW x m-2xh- 1) at the temperature of inlet water of 60 degrees C. It is achieved by inducing convective flows in the gas phase, which enable the rise of effective heat transfer coefficient for membrane evaporator -250 W x m-2xK- 1. The attained efficiency is confirmed to originate from heat extraction from the gaseous phase and the evaporation of water from the external surface of fibers. While exhibiting maximal heat flux the regime requires liquid phase penetration through the pores, leading to degradation of the membrane performance in desalination applications. To avoid penetration of ions thin (-300 nm) graphene oxide coating was deposited onto the internal surface of the nanoporous evaporator, enabling to avoid liquid penetration through the pores and salts crystallization at the external surface, while exhibiting slightly lower performance of the membrane.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors
    Wang, R
    Zhang, HY
    Feron, PHM
    Liang, DT
    SEPARATION AND PURIFICATION TECHNOLOGY, 2005, 46 (1-2) : 33 - 40
  • [22] Demonstration of direct ocean carbon capture using hollow fiber membrane contactors
    Rivero, Joanna
    Lieber, Austin
    Snodgrass, Christopher
    Neal, Zoe
    Hildebrandt, Marina
    Gamble, William
    Hornbostel, Katherine
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [23] Heat and moisture transfer and dimension optimization of cross-flow hollow fiber membrane contactor for membrane distillation desalination
    Li, Guopei
    Liu, Jianhua
    Zhang, Fangfang
    Wang, Junru
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 297
  • [24] Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors
    Golkhar, A.
    Keshavarz, P.
    Mowla, D.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 433 : 17 - 24
  • [25] Preparation and assessment of polyvinylidene fluoride hollow fiber membrane for desalination by membrane distillation
    Tewfik, Shadia R.
    Sorour, Mohamed H.
    Hani, Heba A.
    Shaalan, Hayam F.
    Abulnour, Abdelghani M. G.
    El Sayed, Marwa M.
    Sayed, Eman S.
    Eltoukhy, Mahmoud
    DESALINATION AND WATER TREATMENT, 2022, 255 : 200 - 211
  • [26] Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: A parametric investigation
    Boucif, Noureddine
    Corriou, Jean Pierre
    Roizard, Denis
    Favre, Eric
    AICHE JOURNAL, 2012, 58 (09) : 2843 - 2855
  • [27] Fluid flow and heat transfer of cross flow hollow fiber membrane contactors with randomly distributed fibers: A topological study
    He, Kui
    Zhang, Li-Zhi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 135 : 186 - 198
  • [28] CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures
    Rajabzadeh, Saeid
    Yoshimoto, Shinya
    Teramoto, Masaaki
    Al-Marzouqi, M.
    Matsuyama, Hideto
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 69 (02) : 210 - 220
  • [29] Chemical Absorption of CO2 in Helically Wound Hollow Fiber Membrane Contactors
    Kaufhold, Dennis
    Kopf, Florian
    Wolff, Christoph
    Beutel, Sascha
    Hilterhaus, Lutz
    Hoffmann, Marco
    Scheper, Thomas
    Schlueter, Michael
    Liese, Andreas
    CHEMIE INGENIEUR TECHNIK, 2013, 85 (04) : 476 - 483
  • [30] Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors
    Karami, M. R.
    Keshavarz, P.
    Khorram, M.
    Mehdipour, M.
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 260 : 576 - 584