Meshless finite block method with infinite elements for axisymmetric cracked solid made of functionally graded materials

被引:3
|
作者
Huang, W. [1 ]
Yang, J. J. [1 ,2 ]
Sladek, J. [2 ]
Sladek, V.
Wen, P. H. [3 ,4 ]
机构
[1] Changsha Univ Sci & Technol, Sch Traff & Transportat Engn, Changsha, Peoples R China
[2] Slovak Acad Sci, Inst Construction & Architecture, Bratislava 84503, Slovakia
[3] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
[4] Nanchang Univ, Inst Aerosp, Nanchang, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric cracked solid; Functionally graded materials; Point collocation method; Meshless finite block method; Laplace transform; Dynamic stress intensity factors; HEAT-CONDUCTION ANALYSIS; FRACTURE;
D O I
10.1016/j.euromechsol.2022.104852
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Axisymmetric cracked solid structures in functionally graded materials (FGMs) under static and dynamic loading are analysed by using the Finite Block Method (FBM). Based on the axisymmetric elasticity theory, the equi-librium equations inside the rotating section of FGMs in the cylinder coordinate system are formulated in strong form. The shape functions in the FBM are constructed by Lagrange polynomial interpolation with mapping techniques for the irregular finite or semi-infinite physical domains. A special approximation technique is pro-posed to avoid singularities in the traction boundary conditions on the axis of symmetry. The stress intensity factor is obtained by the crack opening displacement. The time-dependent problems are addressed using the Laplace transform and Durbin's inverse approach. Several numerical examples are investigated in order to illustrate the accuracy and convergence of the proposed method, and the numerical solutions are compared with analytical solutions, the finite element method and other methods.
引用
收藏
页数:13
相关论文
共 49 条