Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms

被引:5
|
作者
Wang, Ruoran [1 ]
Cai, Linrui [2 ,3 ]
Zhang, Jing [1 ]
He, Min [4 ]
Xu, Jianguo [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Neurosurg, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Univ Hosp 2, Inst Drug Clin Trial GCP, Chengdu 610041, Peoples R China
[3] Sichuan Univ, Dis Women & Children, Minist Educ, Chengdu 610041, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Crit Care Med, Chengdu 610041, Peoples R China
来源
MEDICINA-LITHUANIA | 2023年 / 59卷 / 01期
基金
中国国家自然科学基金;
关键词
traumatic brain injury; acute respiratory distress syndrome; machine learning; prognosis factors; ACUTE LUNG INJURY; COAGULOPATHY; COAGULATION; MORTALITY; PRESSURE;
D O I
10.3390/medicina59010171
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Acute respiratory distress syndrome (ARDS) commonly develops in traumatic brain injury (TBI) patients and is a risk factor for poor prognosis. We designed this study to evaluate the performance of several machine learning algorithms for predicting ARDS in TBI patients. Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for this study. ARDS was identified according to the Berlin definition. Included TBI patients were divided into the training cohort and the validation cohort with a ratio of 7:3. Several machine learning algorithms were utilized to develop predictive models with five-fold cross validation for ARDS including extreme gradient boosting, light gradient boosting machine, Random Forest, adaptive boosting, complement naive Bayes, and support vector machine. The performance of machine learning algorithms were evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy and F score. Results: 649 TBI patients from the MIMIC-III database were included with an ARDS incidence of 49.5%. The random forest performed the best in predicting ARDS in the training cohort with an AUC of 1.000. The XGBoost and AdaBoost ranked the second and the third with an AUC of 0.989 and 0.815 in the training cohort. The random forest still performed the best in predicting ARDS in the validation cohort with an AUC of 0.652. AdaBoost and XGBoost ranked the second and the third with an AUC of 0.631 and 0.620 in the validation cohort. Several mutual top features in the random forest and AdaBoost were discovered including age, initial systolic blood pressure and heart rate, Abbreviated Injury Score chest, white blood cells, platelets, and international normalized ratio. Conclusions: The random forest and AdaBoost based models have stable and good performance for predicting ARDS in TBI patients. These models could help clinicians to evaluate the risk of ARDS in early stages after TBI and consequently adjust treatment decisions.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Prognosis prediction in traumatic brain injury patients using machine learning algorithms
    Khalili, Hosseinali
    Rismani, Maziyar
    Nematollahi, Mohammad Ali
    Masoudi, Mohammad Sadegh
    Asadollahi, Arefeh
    Taheri, Reza
    Pourmontaseri, Hossein
    Valibeygi, Adib
    Roshanzamir, Mohamad
    Alizadehsani, Roohallah
    Niakan, Amin
    Andishgar, Aref
    Islam, Sheikh Mohammed Shariful
    Acharya, U. Rajendra
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [12] Moderate/severe acute respiratory distress syndrome in patients with or without traumatic brain injury
    Weirich, Priscila P.
    Tozo, Tatiane C.
    Wandeur, Vanessa
    Duarte, Pericles A. D.
    TRAUMA-ENGLAND, 2015, 17 (04): : 274 - 281
  • [13] Mechanical ventilation in acute brain injury patients with acute respiratory distress syndrome
    Humayun, Mariyam
    Premraj, Lavienraj
    Shah, Vishank
    Cho, Sung-Min
    FRONTIERS IN MEDICINE, 2022, 9
  • [14] Traumatic Brain Injury and Pediatric Acute Respiratory Distress Syndrome: Moving the Field Forward*
    Tasker, Robert C.
    PEDIATRIC CRITICAL CARE MEDICINE, 2020, 21 (02) : 198 - 199
  • [15] Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: a secondary analysis of a cohort study
    Ding, Xian-Fei
    Li, Jin-Bo
    Liang, Huo-Yan
    Wang, Zong-Yu
    Jiao, Ting-Ting
    Liu, Zhuang
    Yi, Liang
    Bian, Wei-Shuai
    Wand, Shu-Peng
    Zhu, Xi
    Sun, Tong-Wen
    JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (01)
  • [16] Early prediction of acute respiratory distress syndrome complicated by acute pancreatitis based on four machine learning models
    Zhang, Mengran
    Pang, Mingge
    CLINICS, 2023, 78
  • [17] Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study
    Huang, Bingsheng
    Liang, Dong
    Zou, Rushi
    Yu, Xiaxia
    Dan, Guo
    Huang, Haofan
    Liu, Heng
    Liu, Yong
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (09)
  • [18] Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms
    Wu, Xiang
    Sun, Yuyao
    Xu, Xiao W.
    Steyerberg, Ewout
    Helmrich, Isabel R. A. Retel
    Lecky, Fiona
    Guo, Jianying
    Li, Xiang
    Feng, Junfeng
    Mao, Qing
    Xie, Guotong
    Maas, Andrew I. R.
    Gao, Guoyi
    Jiang, Jiyao
    JOURNAL OF NEUROTRAUMA, 2023, 40 (13-14) : 1366 - 1375
  • [19] Prevalence and Outcome of Acute Respiratory Distress Syndrome in Traumatic Brain Injury: A Systematic Review and Meta-Analysis
    Tracey H. Fan
    Merry Huang
    Aron Gedansky
    Carrie Price
    Chiara Robba
    Adrian V. Hernandez
    Sung-Min Cho
    Lung, 2021, 199 : 603 - 610
  • [20] Machine learning algorithms for prediction of ventilator associated pneumonia in traumatic brain injury patients from the MIMIC-III database
    Wang, Ruoran
    Cai, Linrui
    Liu, Yan
    Zhang, Jing
    Ou, Xiaofeng
    Xu, Jianguo
    HEART & LUNG, 2023, 62 : 225 - 232