Primitive normal values of rational functions over finite fields

被引:0
|
作者
Sharma, Avnish K. [1 ]
Rani, Mamta [1 ]
Tiwari, Sharwan K. [2 ]
机构
[1] Univ Delhi, Dept Math, New Delhi 110007, India
[2] Def Res & Dev Org, Sci Anal Grp, Metcalfe House, Delhi 110054, India
关键词
Finite fields; primitive elements; normal elements; additive and multiplicative characters; NORMAL BASES; ELEMENTS; EXISTENCE;
D O I
10.1142/S0219498823501529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider rational functions f with some minor restrictions over the finite field F-qn, where q = p(k) for some prime p and positive integer k. We establish a sufficient condition for the existence of a pair (alpha, f(alpha)) of primitive normal elements in F-qn over F-q Moreover, for q = 2(k) and rational functions f with quadratic numerators and denominators, we explicitly find that there are at most 55 finite fields F-qn in which such a pair (alpha, f(alpha)) of primitive normal elements may not exist.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Hypergeometric functions over finite fields
    Noriyuki Otsubo
    The Ramanujan Journal, 2024, 63 : 55 - 104
  • [32] Hypergeometric functions over finite fields
    Otsubo, Noriyuki
    RAMANUJAN JOURNAL, 2024, 63 (01) : 55 - 104
  • [33] Hypergeometric Functions Over Finite Fields
    Fuselier, Jenny
    Long, Ling
    Ramakrishna, Ravi
    Swisher, Holly
    Tu, Fang-Ting
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) : 1 - +
  • [34] Existence of primitive 2-normal elements in finite fields
    Aguirre, Josimar J. R.
    Neumann, Victor G. L.
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [35] Rational functions over finite fields having continued fraction expansions with linear partial quotients
    Friesen, Christian
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 185 - 192
  • [36] On the Number of Rational Points of Hypersurfaces over Finite Fields
    Edoardo Ballico
    Antonio Cossidente
    Results in Mathematics, 2007, 51 : 1 - 4
  • [37] On the number of rational points of hypersurfaces over finite fields
    Ballico, Edoardo
    Cossidente, Antonio
    RESULTS IN MATHEMATICS, 2007, 51 (1-2) : 1 - 4
  • [38] Existence of primitive pairs with prescribed traces over finite fields
    Sharma, Hariom
    Sharma, R. K.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1773 - 1780
  • [39] Pair of primitive elements with prescribed traces over finite fields
    Sharma, R. K.
    Gupta, Anju
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1278 - 1286
  • [40] Efficient inversion of rational maps over finite fields
    Cafure, Antonio
    Matera, Guillermo
    Waissbein, Ariel
    ALGORITHMS IN ALGEBRAIC GEOMETRY, 2008, 146 : 55 - +