Finite fields;
primitive elements;
normal elements;
additive and multiplicative characters;
NORMAL BASES;
ELEMENTS;
EXISTENCE;
D O I:
10.1142/S0219498823501529
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider rational functions f with some minor restrictions over the finite field F-qn, where q = p(k) for some prime p and positive integer k. We establish a sufficient condition for the existence of a pair (alpha, f(alpha)) of primitive normal elements in F-qn over F-q Moreover, for q = 2(k) and rational functions f with quadratic numerators and denominators, we explicitly find that there are at most 55 finite fields F-qn in which such a pair (alpha, f(alpha)) of primitive normal elements may not exist.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon I,C1428EHA, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon I,C1428EHA, Buenos Aires, DF, Argentina
Cafure, Antonio
Matera, Guillermo
论文数: 0引用数: 0
h-index: 0
机构:
Universidad Nacional Gen Sarmiento, CONICET, Inst Desarrollo Humano, Los Polvorines, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon I,C1428EHA, Buenos Aires, DF, Argentina
Matera, Guillermo
Waissbein, Ariel
论文数: 0引用数: 0
h-index: 0
机构:
Ciudad Buenos Aires, CoreLabs, Core Secur Technol, De Buenos Aires, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon I,C1428EHA, Buenos Aires, DF, Argentina
Waissbein, Ariel
ALGORITHMS IN ALGEBRAIC GEOMETRY,
2008,
146
: 55
-
+