Primitive normal values of rational functions over finite fields

被引:0
|
作者
Sharma, Avnish K. [1 ]
Rani, Mamta [1 ]
Tiwari, Sharwan K. [2 ]
机构
[1] Univ Delhi, Dept Math, New Delhi 110007, India
[2] Def Res & Dev Org, Sci Anal Grp, Metcalfe House, Delhi 110054, India
关键词
Finite fields; primitive elements; normal elements; additive and multiplicative characters; NORMAL BASES; ELEMENTS; EXISTENCE;
D O I
10.1142/S0219498823501529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider rational functions f with some minor restrictions over the finite field F-qn, where q = p(k) for some prime p and positive integer k. We establish a sufficient condition for the existence of a pair (alpha, f(alpha)) of primitive normal elements in F-qn over F-q Moreover, for q = 2(k) and rational functions f with quadratic numerators and denominators, we explicitly find that there are at most 55 finite fields F-qn in which such a pair (alpha, f(alpha)) of primitive normal elements may not exist.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Pairs of r-Primitive and k-Normal Elements in Finite Fields
    Aguirre, Josimar J. R.
    Neumann, Victor G. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (02):
  • [22] Existence of primitive normal pairs with one prescribed trace over finite fields
    Hariom Sharma
    R. K. Sharma
    Designs, Codes and Cryptography, 2021, 89 : 2841 - 2855
  • [23] On r-primitive k-normal elements with prescribed norm and trace over finite fields
    Rani, Mamta
    Sharma, Avnish K.
    Tiwari, Sharwan K.
    Panigrahi, Anupama
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [24] On the number of k-normal elements over finite fields
    Saygi, Zulfukar
    Tilenbaev, Ernist
    Urtis, Cetin
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 795 - 812
  • [25] Construction of primitive polynomials over finite fields
    Alizadeh, Mahmood
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [26] Subgroups generated by rational functions in finite fields
    Domingo Gómez-Pérez
    Igor E. Shparlinski
    Monatshefte für Mathematik, 2015, 176 : 241 - 253
  • [27] On the existence of primitive completely normal bases of finite fields
    Garefalakis, Theodoulos
    Kapetanakis, Giorgos
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 909 - 921
  • [28] Completely normal primitive basis generators of finite fields
    Morgan, IH
    Mullen, GL
    UTILITAS MATHEMATICA, 1996, 49 : 21 - 43
  • [29] Additive polynomials and primitive roots over finite fields
    Özbudak, F
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 987 - 991
  • [30] About r-primitive and k-normal elements in finite fields
    Aguirre, Josimar J. R.
    Carvalho, Cicero
    Neumann, Victor G. L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 115 - 126