MDS or NMDS LCD codes from twisted Reed-Solomon codes

被引:7
|
作者
Huang, Daitao [1 ]
Yue, Qin [2 ]
Niu, Yongfeng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211100, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Linear complementary dual; Generalized twisted Reed-Solomon codes; MDS codes; LINEAR CODES; COMPLEMENTARY;
D O I
10.1007/s12095-022-00564-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximum distance separable (MDS) codes are optimal with parameters [n,k,n - k + 1]. Near MDS (NMDS) codes were introduced in 1995 by weakening the definition of MDS codes. NMDS codes also have applications in secret sharing scheme. Linear complementary dual (LCD) codes have been widely used in communications systems, consumer electronics, cryptography and so on. The construction of LCD MDS codes is thus interesting in coding theory. Twisted Reed Solomon (TRS) codes are generalized by Reed Solomon (RS) codes and are not equivalent to RS codes in general case. In this paper, we give parity check matrices of twisted generalized Reed-Solomon (TGRS) codes, show the sufficient and necessary condition that TGRS codes are MDS or NMDS codes, and construct several classes of LCD MDS or NMDS codes from two classes of TGRS codes.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条
  • [41] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [42] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5684 - 5698
  • [43] Twisted Reed-Solomon Codes With One-Dimensional Hull
    Wu, Yansheng
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (02) : 383 - 386
  • [44] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 591 - 604
  • [45] A class of double-twisted generalized Reed-Solomon codes
    Zhu, Canze
    Liao, Qunying
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [46] Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes
    Giuliano G. La Guardia
    Quantum Information Processing, 2012, 11 : 591 - 604
  • [47] A note on good permutation codes from Reed-Solomon codes
    Sobhani, R.
    Abdollahi, A.
    Bagherian, J.
    Khatami, M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (10) : 2335 - 2340
  • [48] Quantum Reed-Solomon codes
    Grassl, M
    Geiselmann, W
    Beth, T
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 231 - 244
  • [49] Two classes of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes
    Wang, Weiwei
    Li, Jiantao
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [50] Construction of quantum MDS codes from Hermitian self-orthogonal generalized Reed-Solomon codes
    Wan, Ruhao
    Zheng, Xiujing
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 181 - 205