MDS or NMDS LCD codes from twisted Reed-Solomon codes

被引:7
|
作者
Huang, Daitao [1 ]
Yue, Qin [2 ]
Niu, Yongfeng [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211100, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Linear complementary dual; Generalized twisted Reed-Solomon codes; MDS codes; LINEAR CODES; COMPLEMENTARY;
D O I
10.1007/s12095-022-00564-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximum distance separable (MDS) codes are optimal with parameters [n,k,n - k + 1]. Near MDS (NMDS) codes were introduced in 1995 by weakening the definition of MDS codes. NMDS codes also have applications in secret sharing scheme. Linear complementary dual (LCD) codes have been widely used in communications systems, consumer electronics, cryptography and so on. The construction of LCD MDS codes is thus interesting in coding theory. Twisted Reed Solomon (TRS) codes are generalized by Reed Solomon (RS) codes and are not equivalent to RS codes in general case. In this paper, we give parity check matrices of twisted generalized Reed-Solomon (TGRS) codes, show the sufficient and necessary condition that TGRS codes are MDS or NMDS codes, and construct several classes of LCD MDS or NMDS codes from two classes of TGRS codes.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 50 条
  • [31] Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes
    Shi, Xueying
    Yue, Qin
    Chang, Yaotsu
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (06): : 1165 - 1182
  • [32] Constructions of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes
    Zheng, Xiujing
    Wang, Liqi
    Zhu, Shixin
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [33] Graph codes with Reed-Solomon component codes
    Hoholdt, Tom
    Justesen, Jorn
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2022 - +
  • [34] On the concatenation of turbo codes and Reed-Solomon codes
    Zhou, GC
    Lin, TS
    Wang, WZ
    Lindsey, WC
    Lai, D
    Chen, E
    Santoru, J
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2134 - 2138
  • [35] Repairing Reed-Solomon Codes
    Guruswami, Venkatesan
    Wootters, Mary
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 216 - 226
  • [36] CONVOLUTIONAL REED-SOLOMON CODES
    EBERT, PM
    TONG, SY
    BELL SYSTEM TECHNICAL JOURNAL, 1969, 48 (03): : 729 - +
  • [37] Balanced Reed-Solomon Codes
    Halbawi, Wael
    Liu, Zihan
    Hassibi, Babak
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 935 - 939
  • [38] Reed-Solomon convolutional codes
    Gluesing-Luerssen, H
    Schmale, W
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 676 - 679
  • [39] Twisted linearized Reed-Solomon codes: A skew polynomial framework
    Neri, Alessandro
    JOURNAL OF ALGEBRA, 2022, 609 : 792 - 839
  • [40] Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography
    Beelen, Peter
    Bossert, Martin
    Puchinger, Sven
    Rosenkilde, Johan
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 946 - 950