Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera

被引:4
|
作者
Arvidsson, Ida [1 ]
Davidsson, Anette [2 ,3 ]
Overgaard, Niels Christian [1 ]
Pagonis, Christos [3 ,4 ]
Astrom, Kalle [1 ]
Good, Elin [3 ,4 ,7 ]
Frias-Rose, Jeronimo [3 ,5 ]
Heyden, Anders [1 ]
Ochoa-Figueroa, Miguel [2 ,3 ,6 ,7 ]
机构
[1] Lund Univ, Ctr Math Sci, Lund, Sweden
[2] Linkoping Univ, Dept Clin Physiol Linkoping, S-58185 Linkoping, Sweden
[3] Linkoping Univ, Dept Hlth Med & Caring Sci, S-58185 Linkoping, Sweden
[4] Linkoping Univ, Dept Cardiol Linkoping, Linkoping, Sweden
[5] Linkoping Univ, Dept Pathol Linkoping, Linkoping, Sweden
[6] Linkoping Univ, Dept Radiol Linkoping, Linkoping, Sweden
[7] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
关键词
Artificial intelligence; deep learning; myocardial scintigraphy; coronary angiography; cadmium-zinc-telluride; FRACTIONAL FLOW RESERVE; ARTERY-DISEASE; SPECT; EXERCISE; ERA;
D O I
10.1007/s12350-022-02995-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. Methods 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. Results Area under the receiver-operating characteristic curve for the prediction of QCA, with > 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). Conclusion Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 50 条
  • [31] Deriving Pulmonary Perfusion Images from 4DCT Using Deep Learning
    Lozano, D.
    Porter, E.
    Guerrero, T.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (03) : S137 - S137
  • [32] Analysis of stress-only imaging, comparing upright and supine CZT camera acquisition to conventional gamma camera images with and without attenuation correction, with coronary angiography as a reference
    Zenith A. Jameria
    Mouhamad Abdallah
    Mariano Fernandez-Ulloa
    Robert O’Donnell
    Alok K. Dwivedi
    Erica Washburn
    Naseer Khan
    Mahyar Khaleghi
    Nischelle Kalakota
    Myron C. Gerson
    Journal of Nuclear Cardiology, 2018, 25 : 540 - 549
  • [33] Prediction of revascularization by coronary CT angiography using a machine learning ischemia risk score
    Kwan, Alan C.
    McElhinney, Priscilla A.
    Tamarappoo, Balaji K.
    Cadet, Sebastien
    Hurtado, Cecilia
    Miller, Robert J. H.
    Han, Donghee
    Otaki, Yuka
    Eisenberg, Evann
    Ebinger, Joseph E.
    Slomka, Piotr J.
    Cheng, Victor Y.
    Berman, Daniel S.
    Dey, Damini
    EUROPEAN RADIOLOGY, 2021, 31 (03) : 1227 - 1235
  • [34] Using Deep Learning on X-ray Orthogonal Coronary Angiograms for Quantitative Coronary Analysis
    Busto, Laura
    Gonzalez-Novoa, Jose A.
    Juan-Salvadores, Pablo
    Jimenez, Victor
    Iniguez, Andres
    Veiga, Cesar
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 869 - 881
  • [35] Automatic Myocardial Contrast Echocardiography Image Quality Assessment Using Deep Learning: Impact on Myocardial Perfusion Evaluation
    Li, Mingqi
    Zeng, Dewen
    Fei, Hongwen
    Song, Hongning
    Chen, Jinling
    Cao, Sheng
    Hu, Bo
    Zhou, Yanxiang
    Guo, Yuxin
    Xu, Xiaowei
    Huang, Kui
    Zhang, Ji
    Zhou, Qing
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (10) : 2247 - 2255
  • [36] Attenuation correction using deep learning for brain perfusion SPECT images
    Sakaguchi, Kenta
    Kaida, Hayato
    Yoshida, Shuhei
    Ishii, Kazunari
    ANNALS OF NUCLEAR MEDICINE, 2021, 35 (05) : 589 - 599
  • [37] Attenuation correction using deep learning for brain perfusion SPECT images
    Kenta Sakaguchi
    Hayato Kaida
    Shuhei Yoshida
    Kazunari Ishii
    Annals of Nuclear Medicine, 2021, 35 : 589 - 599
  • [38] Deep Learning-based Prediction of Percutaneous Recanalization in Chronic Total Occlusion Using Coronary CT Angiography
    Zhou, Zhen
    Gao, Yifeng
    Zhang, Weiwei
    Zhang, Nan
    Wang, Hui
    Wang, Rui
    Gao, Zhifan
    Huang, Xiaomeng
    Zhou, Shanshan
    Dai, Xu
    Yang, Guang
    Zhang, Heye
    Nieman, Koen
    Xu, Lei
    RADIOLOGY, 2023, 309 (02)
  • [39] Coronary X-ray angiography segmentation using Artificial Intelligence: a multicentric validation study of a deep learning model
    Miguel Nobre Menezes
    João Lourenço Silva
    Beatriz Silva
    Tiago Rodrigues
    Cláudio Guerreiro
    João Pedro Guedes
    Manuel Oliveira Santos
    Arlindo L. Oliveira
    Fausto J. Pinto
    The International Journal of Cardiovascular Imaging, 2023, 39 : 1385 - 1396
  • [40] Coronary X-ray angiography segmentation using Artificial Intelligence: a multicentric validation study of a deep learning model
    Reiber, Johan H. C.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2023, 39 (07) : 1217 - 1219