Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera

被引:4
|
作者
Arvidsson, Ida [1 ]
Davidsson, Anette [2 ,3 ]
Overgaard, Niels Christian [1 ]
Pagonis, Christos [3 ,4 ]
Astrom, Kalle [1 ]
Good, Elin [3 ,4 ,7 ]
Frias-Rose, Jeronimo [3 ,5 ]
Heyden, Anders [1 ]
Ochoa-Figueroa, Miguel [2 ,3 ,6 ,7 ]
机构
[1] Lund Univ, Ctr Math Sci, Lund, Sweden
[2] Linkoping Univ, Dept Clin Physiol Linkoping, S-58185 Linkoping, Sweden
[3] Linkoping Univ, Dept Hlth Med & Caring Sci, S-58185 Linkoping, Sweden
[4] Linkoping Univ, Dept Cardiol Linkoping, Linkoping, Sweden
[5] Linkoping Univ, Dept Pathol Linkoping, Linkoping, Sweden
[6] Linkoping Univ, Dept Radiol Linkoping, Linkoping, Sweden
[7] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
关键词
Artificial intelligence; deep learning; myocardial scintigraphy; coronary angiography; cadmium-zinc-telluride; FRACTIONAL FLOW RESERVE; ARTERY-DISEASE; SPECT; EXERCISE; ERA;
D O I
10.1007/s12350-022-02995-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. Methods 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. Results Area under the receiver-operating characteristic curve for the prediction of QCA, with > 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). Conclusion Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 50 条
  • [21] Stress-only myocardial perfusion scintigraphy: a prospective study on the accuracy and observer agreement with quantitative coronary angiography as the gold standard
    Ejlersen, June A.
    May, Ole
    Mortensen, Jesper
    Nielsen, Gitte L.
    Lauridsen, Jeppe F.
    Allan, Johansen
    NUCLEAR MEDICINE COMMUNICATIONS, 2017, 38 (11) : 904 - 911
  • [22] Development of a method for automated and stable myocardial perfusion measurement using coronary X-ray angiography images
    Takuya Sakaguchi
    Takashi Ichihara
    Takahiro Natsume
    Jingwu Yao
    Omair Yousuf
    Jeffrey C. Trost
    Joao A. C. Lima
    Richard T. George
    The International Journal of Cardiovascular Imaging, 2015, 31 : 905 - 914
  • [23] Development of a method for automated and stable myocardial perfusion measurement using coronary X-ray angiography images
    Sakaguchi, Takuya
    Ichihara, Takashi
    Natsume, Takahiro
    Yao, Jingwu
    Yousuf, Omair
    Trost, Jeffrey C.
    Lima, Joao A. C.
    George, Richard T.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (05): : 905 - 914
  • [24] EVALUATION OF CORONARY ARTERY DISEASE USING MYOCARDIAL ELASTOGRAPHY WITH DIVERGING WAVE IMAGING: VALIDATION AGAINST MYOCARDIAL PERFUSION IMAGING AND CORONARY ANGIOGRAPHY
    Grondin, Julien
    Waase, Marc
    Gambhir, Alok
    Bunting, Ethan
    Sayseng, Vincent
    Konofagou, Elisa E.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2017, 43 (05): : 893 - 902
  • [25] Prediction of Obstructive Coronary Artery Disease from Myocardial Perfusion Scintigraphy using Deep Neural Networks
    Arvidsson, Ida
    Overgaard, Niels Christian
    Astrom, Kalle
    Heyden, Anders
    Figueroa, Miguel Ochoa
    Rose, Jeronimo Frias
    Davidsson, Anette
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4442 - 4449
  • [26] Diagnostic Accuracy of Myocardial Perfusion Imaging With CZT Technology Systemic Review and Meta-Analysis of Comparison With Invasive Coronary Angiography
    Nudi, Francesco
    Iskandrian, Ami E.
    Schillaci, Orazio
    Peruzzi, Mariangela
    Frati, Giacomo
    Biondi-Zoccai, Giuseppe
    JACC-CARDIOVASCULAR IMAGING, 2017, 10 (07) : 787 - 794
  • [27] Hyperspectral Demosaicing of Snapshot Camera Images Using Deep Learning
    Wisotzky, Eric L.
    Daudkane, Charul
    Hilsmann, Anna
    Eisert, Peter
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 198 - 212
  • [28] One-Stage Detection without Segmentation for Multi-Type Coronary Lesions in Angiography Images Using Deep Learning
    Wu, Hui
    Zhao, Jing
    Li, Jiehui
    Zeng, Yan
    Wu, Weiwei
    Zhou, Zhuhuang
    Wu, Shuicai
    Xu, Liang
    Song, Min
    Yu, Qibin
    Song, Ziwei
    Chen, Lin
    DIAGNOSTICS, 2023, 13 (18)
  • [29] Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study
    Dey, Damini
    Gaur, Sara
    Ovrehus, Kristian A.
    Slomka, Piotr J.
    Betancur, Julian
    Goeller, Markus
    Hell, Michaela M.
    Gransar, Heidi
    Berman, Daniel S.
    Achenbach, Stephan
    Botker, Hans Erik
    Jensen, Jesper Moller
    Lassen, Jens Flensted
    Norgaard, Bjarne Linde
    EUROPEAN RADIOLOGY, 2018, 28 (06) : 2655 - 2664
  • [30] Quantitative coronary arterial stenosis assessment by multidetector CT and invasive coronary angiography for identifying patients with myocardial perfusion abnormalities
    G. K. Godoy
    A. Vavere
    J. M. Miller
    H. Chahal
    H. Niinuma
    P. Lemos
    J. Hoe
    N. Paul
    M. E. Clouse
    C. D. Ramos
    J. A. Lima
    A. Arbab-Zadeh
    Journal of Nuclear Cardiology, 2012, 19 : 922 - 930