Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera

被引:4
|
作者
Arvidsson, Ida [1 ]
Davidsson, Anette [2 ,3 ]
Overgaard, Niels Christian [1 ]
Pagonis, Christos [3 ,4 ]
Astrom, Kalle [1 ]
Good, Elin [3 ,4 ,7 ]
Frias-Rose, Jeronimo [3 ,5 ]
Heyden, Anders [1 ]
Ochoa-Figueroa, Miguel [2 ,3 ,6 ,7 ]
机构
[1] Lund Univ, Ctr Math Sci, Lund, Sweden
[2] Linkoping Univ, Dept Clin Physiol Linkoping, S-58185 Linkoping, Sweden
[3] Linkoping Univ, Dept Hlth Med & Caring Sci, S-58185 Linkoping, Sweden
[4] Linkoping Univ, Dept Cardiol Linkoping, Linkoping, Sweden
[5] Linkoping Univ, Dept Pathol Linkoping, Linkoping, Sweden
[6] Linkoping Univ, Dept Radiol Linkoping, Linkoping, Sweden
[7] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
关键词
Artificial intelligence; deep learning; myocardial scintigraphy; coronary angiography; cadmium-zinc-telluride; FRACTIONAL FLOW RESERVE; ARTERY-DISEASE; SPECT; EXERCISE; ERA;
D O I
10.1007/s12350-022-02995-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. Methods 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. Results Area under the receiver-operating characteristic curve for the prediction of QCA, with > 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). Conclusion Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 50 条
  • [1] Deep learning prediction of quantitative coronary angiography values using myocardial perfusion images with a CZT camera
    Ida Arvidsson
    Anette Davidsson
    Niels Christian Overgaard
    Christos Pagonis
    Kalle Åström
    Elin Good
    Jeronimo Frias-Rose
    Anders Heyden
    Miguel Ochoa-Figueroa
    Journal of Nuclear Cardiology, 2023, 30 : 116 - 126
  • [2] Diagnostic performance of different cardiac stress protocols for myocardial perfusion imaging for the diagnosis of coronary artery disease using a cadmium-zinc-telluride camera with invasive coronary angiography correlation
    Ochoa-Figueroa, M.
    Frias-Rose, J.
    Good, E.
    Sanchez-Rodriguez, V.
    Davidsson, A.
    Pagonis, C.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2023, 42 (05): : 281 - 288
  • [3] Diagnostic performance of a novel deep learning attenuation correction software for MPI using a cardio dedicated CZT camera: Experience in the clinical practice
    Ochoa-Figueroa, M.
    Valera-Soria, C.
    Pagonis, C.
    Ressner, M.
    Norberg, P.
    Sanchez-Rodriguez, V.
    Frias-Rose, J.
    Good, E.
    Davidsson, A.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2024, 43 (01): : 23 - 30
  • [4] Analysis of stress-only imaging, comparing upright and supine CZT camera acquisition to conventional gamma camera images with and without attenuation correction, with coronary angiography as a reference
    Jameria, Zenith A.
    Abdallah, Mouhamad
    Fernandez-Ulloa, Mariano
    O'Donnell, Robert
    Dwivedi, Alok K.
    Washburn, Erica
    Khan, Naseer
    Khaleghi, Mahyar
    Kalakota, Nischelle
    Gerson, Myron C.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (02) : 540 - 549
  • [5] Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT
    Ko, Chi-Lun
    Lin, Shau-Syuan
    Huang, Cheng-Wen
    Chang, Yu-Hui
    Ko, Kuan-Yin
    Cheng, Mei-Fang
    Wang, Shan-Ying
    Chen, Chung-Ming
    Wu, Yen-Wen
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (02) : 376 - 386
  • [6] Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT
    Chi-Lun Ko
    Shau-Syuan Lin
    Cheng-Wen Huang
    Yu-Hui Chang
    Kuan-Yin Ko
    Mei-Fang Cheng
    Shan-Ying Wang
    Chung-Ming Chen
    Yen-Wen Wu
    European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50 : 376 - 386
  • [7] Deep learning-based prediction of future myocardial infarction using invasive coronary angiography: a feasibility study
    Mahendiran, Thabo
    Thanou, Dorina
    Senouf, Ortal
    Meier, David
    Dayer, Nicolas
    Aminfar, Fahrang
    Auberson, Denise
    Raita, Omar
    Frossard, Pascal
    Pagnoni, Mattia
    Cook, Stephane
    De Bruyne, Bernard
    Muller, Olivier
    Abbe, Emmanuel
    Fournier, Stephane
    OPEN HEART, 2023, 10 (01):
  • [8] Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera
    Lima, Ronaldo
    Peclat, Thais
    Soares, Thalita
    Ferreira, Caio
    Souza, Ana Carolina
    Camargo, Gabriel
    JOURNAL OF NUCLEAR CARDIOLOGY, 2017, 24 (01) : 245 - 251
  • [9] Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera
    Ronaldo Lima
    Thais Peclat
    Thalita Soares
    Caio Ferreira
    Ana Carolina Souza
    Gabriel Camargo
    Journal of Nuclear Cardiology, 2017, 24 : 245 - 251
  • [10] Deep learning–based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance
    Narges Aghakhan Olia
    Alireza Kamali-Asl
    Sanaz Hariri Tabrizi
    Parham Geramifar
    Peyman Sheikhzadeh
    Saeed Farzanefar
    Hossein Arabi
    Habib Zaidi
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 1508 - 1522