Identification of plant microRNAs using convolutional neural network

被引:0
|
作者
Zhang, Yun [1 ]
Huang, Jianghua [1 ]
Xie, Feixiang [1 ]
Huang, Qian [1 ]
Jiao, Hongguan [1 ]
Cheng, Wenbo [1 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Coll Informat Engn, Guiyang, Guizhou, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
deep learning; plant; microRNA; !text type='Java']Java[!/text; SRICATs; ANNOTATION; TOOL; CRITERIA;
D O I
10.3389/fpls.2024.1330854
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Plant Disease Identification Using Shallow Convolutional Neural Network
    Hassan, S. K. Mahmudul
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    Maji, Arnab Kumar
    AGRONOMY-BASEL, 2021, 11 (12):
  • [2] Plant Disease Identification Using a Novel Convolutional Neural Network
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    IEEE ACCESS, 2022, 10 : 5390 - 5401
  • [3] Plant Disease Identification and Classification Using Convolutional Neural Network and SVM
    Kibriya, Hareem
    Abdullah, Iram
    Nasrullah, Amber
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 264 - 268
  • [4] Lightweight Isotropic Convolutional Neural Network for Plant Disease Identification
    Feng, Wenfeng
    Song, Qiushuang
    Sun, Guoying
    Zhang, Xin
    AGRONOMY-BASEL, 2023, 13 (07):
  • [5] Skin Identification Using Deep Convolutional Neural Network
    Oghaz, Mahdi Maktab Dar
    Argyriou, Vasileios
    Monekosso, Dorothy
    Remagnino, Paolo
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 181 - 193
  • [6] IDENTIFICATION OF DEFECTIVE CHERRIES USING CONVOLUTIONAL NEURAL NETWORK
    Kaygisiz, Halil
    Cakir, Abdulkadir
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (06): : 5492 - 5498
  • [7] Tamil Author Identification Using Convolutional Neural Network
    Archchitha, A.
    Charles, E. Y. A.
    2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [8] Identification of Functional piRNAs Using a Convolutional Neural Network
    Ali, Syed Danish
    Alam, Waleed
    Tayara, Hilal
    Chong, Kil To
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1661 - 1669
  • [9] Kissing Bugs Identification Using Convolutional Neural Network
    Abdelghani, Bassam A.
    Banitaan, Shadi
    Maleki, Mina
    Mazen, Amna
    IEEE ACCESS, 2021, 9 : 140539 - 140548
  • [10] Research on Plant Species Identification Based on Improved Convolutional Neural Network
    Yuan, Chuangchuang
    Liu, Tonghai
    Song, Shuang
    Gao, Fangyu
    Zhang, Rui
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (04) : 1037 - 1058