GLOBAL EXISTENCE AND OPTIMAL TIME DECAY FOR THE BAER-NUNZIATO MODEL IN THE Lp CRITICAL BESOV SPACE

被引:0
作者
Zhu, Limin
Cao, Hongmei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 10期
基金
中国国家自然科学基金;
关键词
The Baer-Nunziato model; Global existence; Optimal decay estimates; Critical Besov spaces; NAVIER-STOKES EQUATIONS; 2-PHASE FLOW MODEL; BLOW-UP CRITERION; GAS-LIQUID MODEL; WEAK SOLUTIONS; CONVERGENCE-RATES; WELL-POSEDNESS; INCOMPRESSIBLE LIMIT; ASYMPTOTIC-BEHAVIOR; SYSTEM;
D O I
10.3934/dcdsb.2024041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are devoted to the study of the compressible viscous Baer-Nunziato (BN) system in multi -dimensional spaces with d >= 2. Compared to previous findings, the (BN) system for compressible two-phase flows is led in two pressure state laws that vary with different phases. This property adds a practical physics background to this model. We will investigate the global existence of strong solutions to the Cauchy problem within the L-p critical regularity framework. Furthermore, we develop a Lyapunovtype energy argument that provides time-decay estimates of solutions without requiring additional smallness assumptions.
引用
收藏
页码:4228 / 4268
页数:41
相关论文
共 57 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
Benzoni-Gavage S., 2007, MULTIDIMENSIONAL HYP
[4]   NOTE ON THE DERIVATION OF MULTI-COMPONENT FLOW SYSTEMS [J].
Bresch, D. ;
Hillairet, M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) :3429-3443
[5]   A Multi-Fluid Compressible System as the Limit of Weak Solutions of the Isentropic Compressible Navier-Stokes Equations [J].
Bresch, D. ;
Huang, X. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (02) :647-680
[6]  
Bresch D., 2020, ARXIV
[7]   A COMPRESSIBLE MULTIFLUID SYSTEM WITH NEW PHYSICAL RELAXATION TERMS [J].
Bresch, Didier ;
Hillairet, Matthieu .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (02) :255-295
[8]   Pressure-relaxation limit for a one-velocity Baer-Nunziato model to a Kapila model [J].
Burtea, Cosmin ;
Crin-Barat, Timothee ;
Tan, Jin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (04) :687-753
[9]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379
[10]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271