Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling

被引:3
|
作者
Zhang, Jiaxin [1 ]
Lei, Xiaoming [1 ]
Chan, Pak-wai [2 ]
Dong, You [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
[2] Hong Kong Observ, Hong Kong 999077, Peoples R China
来源
关键词
Structural health monitoring; Physics -informed machine learning (PIML); Resonance effect; Response prediction; Climate change; Fragility analysis; SEISMIC RESPONSE; WIND-SPEED; PREDICTION;
D O I
10.1016/j.jobe.2024.108627
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate prediction the dynamic response of structures under various loads is a complex and challenging task due to the uncertainties and intricacies of loading scenarios and analysis methods. Traditional approaches to structural analysis and modeling often rely on physics-based simulations, which can be computationally expensive and time-consuming. Over the years, Machine Learning (ML) methods have proven to be a formidable tool for data-driven modeling, based on in-situ monitoring data. However, these ML models are generally purely data-driven, lacking consideration for relevant physical information such as dynamic characteristics. Hence, this paper proposes a Physics-Informed Machine Learning (PIML) approach for modeling structural dynamic performance. This method embeds resonance effect, a crucial piece of physical information in real-world engineering, into the design of the multilayer perceptron (MLP) loss function. The model is validated through numerical simulations of forced vibrations in a singledegree-of-freedom system and a vehicle-bridge coupled system. The results indicate that the proposed PIML can model the system dynamic response effectively and simulate resonance effect at key frequency-domain locations accurately. Subsequently, features are extracted from the realworld monitoring data of a high-rise building dynamic response during Typhoon Hato, and PIML is applied for training. The results reveal that PIML significantly outperforms pure ML algorithms, even with a small dataset, and can effectively capture resonance effect in wind-induced vibrations. Using a well-trained PIML, a parameter analysis is conducted, comparing the dynamic performance under different wind speeds and frequency conditions. Lastly, considering the variation in wind parameters due to climate change, PIML is employed to analyze long-term structural fragility. The findings indicate significant changes in fragility from 1985 to 2045. In conclusion, the proposed PIML algorithm offers several advantages over conventional methods, such as reduced computational costs, improved accuracy, and the ability to capture complex nonlinear behaviors and resonance effect of interest, and efficiently serve in analyses of structural reliability and fragility.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Local Resonance Prediction Based on Physics-Informed Machine Learning in Piezoelectric Metamaterials
    Wang, Ting
    Zhou, Qianyu
    Tang, Jiong
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946
  • [22] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [23] Physics-Informed Machine Learning Part II: Applications in Structural Response Forecasting
    Downey, Austin R. J.
    Tronci, Eleonora Maria
    Chowdhury, Puja
    Coble, Daniel
    DATA SCIENCE IN ENGINEERING, VOL. 10, IMAC 2024, 2025, : 63 - 66
  • [24] Machine Learning in Structural Engineering: Physics-Informed Neural Networks for Beam Problems
    dos Santos, Felipe Pereira
    Gori, Lapo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2025,
  • [25] Physics-informed machine learning and its structural integrity applications: state of the art
    Zhu, Shun-Peng
    Wang, Lanyi
    Luo, Changqi
    Correia, Jose A. F. O.
    De Jesus, Abilio M. P.
    Berto, Filippo
    Wang, Qingyuan Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [26] Physics-Informed Machine Learning for the Efficient Modeling of High-Frequency Devices
    Liu, Yanan
    Li, Hongliang
    Jin, Jian-Ming
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2025, 10 : 28 - 37
  • [27] Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects
    Du, Y.
    Mukherjee, T.
    DebRoy, T.
    APPLIED MATERIALS TODAY, 2021, 24
  • [28] Physics-informed machine learning modeling for predictive control using noisy data
    Alhajeri, Mohammed S.
    Abdullah, Fahim
    Wu, Zhe
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 186 : 34 - 49
  • [29] Physics-informed machine learning for reduced-order modeling of nonlinear problems
    Chen, Wenqian
    Wang, Qian
    Hesthaven, Jan S.
    Zhang, Chuhua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [30] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5