Realization of Hadamard gate with twisted magnon modes in synthetic antiferromagnets

被引:24
作者
Wang, Xuan [1 ,2 ,3 ]
Yuan, Shaohua [2 ,3 ,4 ]
Sui, Chaowei [2 ,3 ,4 ]
Wang, Yan [1 ,2 ,3 ]
Jia, Chenglong [2 ,3 ,4 ,5 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Dept Phys, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[3] Lanzhou Univ, Key Lab Theoret Phys Gansu Prov, Lanzhou 730000, Peoples R China
[4] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
[5] Lanzhou Univ, Key Lab Quantum Theory & Applicat, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Antiferromagnetic materials - Antiferromagnetism - Cobalt compounds - Computation theory - Degrees of freedom (mechanics) - Polarization - Spin Hall effect - Topology;
D O I
10.1063/5.0189536
中图分类号
O59 [应用物理学];
学科分类号
摘要
Manipulating the polarization of spin waves highlights the potential of antiferromagnetic magnonics in encoding and handling magnon information with high fidelity. Here, we propose a flexible approach to mutually convert polarization states (i.e., Hadamard gate) by incorporating a topological degree of freedom, intrinsic orbital angular momentum (OAM), into twisted spin wave modes within synthetic antiferromagnetic nanodisks. The polarization states of spin waves and the implementation of magnonic logic operations can be electrically read out through combined spin pumping and inverse spin Hall effect, as demonstrated by numerical micromagnetic simulations for CoFeB-based synthetic antiferromagnets. Our findings present an exciting possibility of parallel magnonic computing utilizing topologically protected and magnetic damping-resistance OAM of twisted magnons.
引用
收藏
页数:6
相关论文
共 40 条
[1]   The 2021 Magnonics Roadmap [J].
Barman, Anjan ;
Gubbiotti, Gianluca ;
Ladak, S. ;
Adeyeye, A. O. ;
Krawczyk, M. ;
Grafe, J. ;
Adelmann, C. ;
Cotofana, S. ;
Naeemi, A. ;
Vasyuchka, V., I ;
Hillebrands, B. ;
Nikitov, S. A. ;
Yu, H. ;
Grundler, D. ;
Sadovnikov, A., V ;
Grachev, A. A. ;
Sheshukova, S. E. ;
Duquesne, J-Y ;
Marangolo, M. ;
Csaba, G. ;
Porod, W. ;
Demidov, V. E. ;
Urazhdin, S. ;
Demokritov, S. O. ;
Albisetti, E. ;
Petti, D. ;
Bertacco, R. ;
Schultheiss, H. ;
Kruglyak, V. V. ;
Poimanov, V. D. ;
Sahoo, S. ;
Sinha, J. ;
Yang, H. ;
Munzenburg, M. ;
Moriyama, T. ;
Mizukami, S. ;
Landeros, P. ;
Gallardo, R. A. ;
Carlotti, G. ;
Kim, J-, V ;
Stamps, R. L. ;
Camley, R. E. ;
Rana, B. ;
Otani, Y. ;
Yu, W. ;
Yu, T. ;
Bauer, G. E. W. ;
Back, C. ;
Uhrig, G. S. ;
Dobrovolskiy, O., V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (41)
[2]   Theory and applications of free-electron vortex states [J].
Bliokh, K. Y. ;
Ivanov, I. P. ;
Guzzinati, G. ;
Clark, L. ;
Van Boxem, R. ;
Beche, A. ;
Juchtmans, R. ;
Alonso, M. A. ;
Schattschneider, P. ;
Nori, F. ;
Verbeeck, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 690 :1-70
[3]   Generalization of the Landau-Lifshitz-Gilbert equation by multi-body contributions to Gilbert damping for non-collinear magnets [J].
Brinker, Sascha ;
Dias, Manuel dos Santos ;
Lounis, Samir .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (28)
[4]   Generation, electric detection, and orbital-angular momentum tunneling of twisted magnons [J].
Chen, Min ;
Schaeffer, Alexander F. ;
Berakdar, Jamal ;
Jia, Chenglong .
APPLIED PHYSICS LETTERS, 2020, 116 (17)
[5]   Antiferromagnetic Spin Wave Field-Effect Transistor [J].
Cheng, Ran ;
Daniels, Matthew W. ;
Zhu, Jian-Gang ;
Xiao, Di .
SCIENTIFIC REPORTS, 2016, 6
[6]   Spin Pumping and Spin-Transfer Torques in Antiferromagnets [J].
Cheng, Ran ;
Xiao, Jiang ;
Niu, Qian ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[7]   Magnonics: spin waves connecting charges, spins and photons [J].
Chumak, A. V. ;
Schultheiss, H. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (30)
[8]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/NPHYS3347, 10.1038/nphys3347]
[9]   Nonabelian magnonics in antiferromagnets [J].
Daniels, Matthew W. ;
Cheng, Ran ;
Yu, Weichao ;
Xiao, Jiang ;
Xiao, Di .
PHYSICAL REVIEW B, 2018, 98 (13)
[10]   Synthetic antiferromagnetic spintronics [J].
Duine, R. A. ;
Lee, Kyung-Jin ;
Parkin, Stuart S. P. ;
Stiles, M. D. .
NATURE PHYSICS, 2018, 14 (03) :217-219