Theoretical analysis of cavern-related exergy losses for compressed air energy storage systems

被引:2
|
作者
White, Alexander J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Compressed air energy storage; Exergetic loss; Irreversible heat transfer; Mixing loss; Round-trip efficiency; PRESSURE VARIATIONS; TEMPERATURE; PERFORMANCE; DESIGN;
D O I
10.1016/j.est.2024.110419
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paper presents a thermodynamic analysis of the exergetic losses occurring due to pressure and temperature variations within constant-volume compressed air caverns. Direct cavern losses are due to mixing and irreversible heat transfer, and may also include an exit loss as a result of unusable thermal exergy in the discharge air. Additional cavern-related losses may occur in other system components, including compressors (due to off-design operation), throttles and thermal stores. These indirect losses are also discussed and analysed for a simplified but representative adiabatic compressed air energy storage system. The overall aim is to determine trends in the various loss components with operating parameters (chiefly the minimum and maximum cavern pressures) and other thermal parameters. A comparison between isobaric and isochoric storage is also made and reveals the trends of efficiency vs. storage density for these two modes of storage.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system
    He, Wei
    Luo, Xing
    Evans, David
    Busby, Jonathan
    Garvey, Seamus
    Parkes, Daniel
    Wang, Jihong
    APPLIED ENERGY, 2017, 208 : 745 - 757
  • [2] Stability analysis of surrounding rock of multi-cavern for compressed air energy storage
    Ji, Wendong
    Wang, Shu
    Wan, Jifang
    Cheng, Shaozhen
    He, Jiaxin
    Shi, Shaohua
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 13 (03): : 175 - 175
  • [3] Experimental study on performance of shallow rock cavern for compressed air energy storage
    Jiang Zhong-ming
    Li Peng
    Zhao Hai-bin
    Feng Shu-rong
    Tang Dong
    ROCK AND SOIL MECHANICS, 2020, 41 (01) : 235 - +
  • [4] Energy and exergy analysis of compressed air engine systems
    Zhang, Xuehui
    Wang, Xing
    Li, Wen
    Zhu, Yangli
    Zuo, Zhitao
    Chen, Haisheng
    ENERGY REPORTS, 2021, 7 : 2316 - 2323
  • [5] Energy and exergy analysis of adiabatic compressed air energy storage system
    Szablowski, Lukasz
    Krawczyk, Piotr
    Badyda, Krzysztof
    Karellas, Sotirios
    Kakaras, Emmanuel
    Bujalski, Wojciech
    ENERGY, 2017, 138 : 12 - 18
  • [6] Thermodynamic analysis of cavern and throttle valve in large-scale compressed air energy storage system
    Zhang, Shuyu
    Wang, Huanran
    Li, Ruixiong
    Li, Chengchen
    Hou, Fubin
    Ben, Yue
    ENERGY CONVERSION AND MANAGEMENT, 2019, 183 : 721 - 731
  • [7] Stability analysis for compressed air energy storage cavern with initial excavation damage zone in an abandoned mining tunnel
    Chen, Xiaohu
    Wang, J. G.
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [8] Exergy analysis of isochoric and isobaric adiabatic compressed air energy storage
    Barbour, Edward
    Oliveira Jr, Maury M.
    Cardenas, Bruno
    Pottie, Daniel
    IET RENEWABLE POWER GENERATION, 2025, 19 (01)
  • [9] Feasibility analysis on the debrining for compressed air energy storage salt cavern with sediment
    Xie, Dongzhou
    Jiang, Tingting
    Ren, Gaofeng
    Chi, Ziqi
    Cao, Dongling
    He, Tao
    Liao, Youqiang
    Zhang, Yixuan
    RENEWABLE ENERGY, 2024, 237
  • [10] Effect of geothermal heat transfer on performance of the adiabatic compressed air energy storage systems with the salt cavern gas storage
    Zhao, Tianhao
    He, Yang
    Deng, Jianqiang
    APPLIED THERMAL ENGINEERING, 2024, 249