LIIVSR: A Unidirectional Recurrent Video Super-Resolution Framework with Gaussian Detail Enhancement and Local Information Interaction Modules

被引:0
|
作者
Lin, Kaishan
Luo, Jianping [1 ]
机构
[1] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen Key Lab Media Secur, Shenzhen, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI | 2023年 / 14259卷
关键词
Video super-resolution; Gaussian detail enhancement; Local information interaction; Information initialization;
D O I
10.1007/978-3-031-44223-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The most popular methods for video super-resolution either rely on a time-sliding window approach to handle low-resolution frames, or utilize a recurrent structure that leverages previously estimated hidden features to recover the current frame. The existing methods do not make better use of initialization and local information. In this paper, we propose a video super-resolution (LIIVSR) framework with Gaussian detail enhancement and local information interaction modules. The proposed Gaussian detail enhancement module enhances the detail part of the hidden features to retain more motion details. To effectively utilize inter-frame local information, we propose a local information interaction module as a propagation framework. The information initialization module effectively extracts relevant information for video frames as the starting information for subsequent long-distance propagation. The multi-residual module obtains local forward and backward information from the coarse extraction of features. The local refinement module further interacts with features to extract fine local forward and backward information. Finally, this local information is used to derive the final super-resolution (SR) output. Our proposed LIIVSR framework achieves state-of-the-art performance on several benchmark datasets, outperforming existing methods in both speed and performance.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 7 条
  • [1] Online Video Super-resolution using Information Replenishing Unidirectional Recurrent Model
    Baniya, Arbind Agrahari
    Lee, Tsz-Kwan
    Eklund, Peter W.
    Aryal, Sunil
    Robles-Kelly, Antonio
    NEUROCOMPUTING, 2023, 546
  • [2] A Fast and Scalable Frame-Recurrent Video Super-Resolution Framework
    Hou, Kaixuan
    Luo, Jianping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 310 - 325
  • [3] Video super-resolution with inverse recurrent net and hybrid local fusion
    Li, Dingyi
    Wang, Zengfu
    Yang, Jian
    NEUROCOMPUTING, 2022, 489 : 40 - 51
  • [4] Video super-resolution network using detail component extraction and optical flow enhancement algorithm
    Zhensen Chen
    Wenyuan Yang
    Jingmin Yang
    Applied Intelligence, 2022, 52 : 10234 - 10246
  • [5] Video super-resolution network using detail component extraction and optical flow enhancement algorithm
    Chen, Zhensen
    Yang, Wenyuan
    Yang, Jingmin
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10234 - 10246
  • [6] Fine-grained video super-resolution via spatial-temporal learning and image detail enhancement
    Yeh, Chia -Hung
    Yang, Hsin-Fu
    Lin, Yu -Yang
    Huang, Wan-Jen
    Tsai, Feng-Hsu
    Kang, Li - Wei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [7] A method for solving the multiple degradation video quality enhancement problem: a processing framework for AI-based coding damage repair in concert with video super-resolution
    Sun, Maojin
    MULTIMEDIA SYSTEMS, 2025, 31 (01)