In-season forecasting of within-field grain yield from Sentinel-2 time series data

被引:5
|
作者
Amin, Eatidal [1 ]
Pipia, Luca [2 ]
Belda, Santiago [3 ]
Perich, Gregor [4 ]
Graf, Lukas Valentin [4 ,5 ]
Aasen, Helge [5 ]
Van Wittenberghe, Shari [1 ]
Moreno, Jose [1 ]
Verrelst, Jochem [1 ]
机构
[1] Univ Valencia, Image Proc Lab IPL, C Catedrat Agustin Escardino Benlloch 9, Paterna 46980, Valencia, Spain
[2] Inst Cartog & Geol Catalunya, Parc Montju S-N, Barcelona 08038, Spain
[3] Univ Alicante, Dept Appl Math, Carretera San Vicente Raspeig, Alicante 03690, Valenciana, Spain
[4] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci, Univ Str 2, CH-8092 Zurich, Switzerland
[5] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosystems Team, Reckenholzstr 191, CH-8046 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Sentinel-2; Crop yield forecasting; Machine learning; Gaussian process regression (GPR); Time series gap-filling; Growing degree days (GDD); CROP YIELD; WINTER-WHEAT; CLIMATE DATA; SATELLITE; NDVI; TEMPERATURE; PERFORMANCE; BIOMASS; MAIZE; MODEL;
D O I
10.1016/j.jag.2023.103636
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Precise knowledge of cropland productivity is relevant for farmers to enable optimizing managing practices; particularly with the perspective of anticipating crop yield ahead of harvest. The current availability of high spatiotemporal resolution Sentinel-2 satellite data offers a unique opportunity to monitor croplands over time. In this context, the recently introduced kernel NDVI (kNDVI) statistically optimizes the conventional NDVI formulation by applying a nonlinear function to the involved bands, and so maximizes the spectral information extraction. This study proposes a workflow for within-field yield forecasting from Sentinel-2 kNDVI time series analysis focusing on winter cereal croplands in Switzerland over three years, comparing with NDVI as baseline. For a temporally continuous modelling of crop yields, Gaussian Process Regression (GPR) was applied to reconstruct cloud-free time series of the complete crop growing seasons. Following, distinct machine learning regression models (GPR, Kernel Ridge Regression and Random Forest) were developed to forecast yield at any point in time throughout the cropland growing season. The integration of Growing Degree Days (GDD) information as temporal spacing reference of the time series considerably improved the accuracy and consistency of in-season yield forecasting. Training and testing within the same year demonstrated that yield can be accurately forecast approximately 2-2.5 months ahead of harvest, at crops' anthesis (flowering) phase, with an RMSE up to 0.71 t/ha and a relative RMSE of 7.60%. Although the forecasting accuracy of the models decreased when predicting yield for the unseen years, still satisfactory results were obtained: RMSE = 0.97 t/ha, relative RMSE = 11.47%.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Topsoil clay content mapping in croplands from Sentinel-2 data: Influence of atmospheric correction methods across a season time series
    Gomez, Cecile
    Vaudour, Emmanuelle
    Feret, Jean-Baptiste
    de Boissieu, Florian
    Dharumarajan, Subramanian
    GEODERMA, 2022, 423
  • [22] Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods
    L. G.T. Crusiol
    Liang Sun
    R. N.R. Sibaldelli
    V. Felipe Junior
    W. X. Furlaneti
    R. Chen
    Z. Sun
    D. Wuyun
    Z. Chen
    M. R. Nanni
    R. H. Furlanetto
    E. Cezar
    A. L. Nepomuceno
    J. R.B. Farias
    Precision Agriculture, 2022, 23 : 1093 - 1123
  • [23] Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods
    Crusiol, L. G. T.
    Sun, Liang
    Sibaldelli, R. N. R.
    Felipe Junior, V
    Furlaneti, W. X.
    Chen, R.
    Sun, Z.
    Wuyun, D.
    Chen, Z.
    Nanni, M. R.
    Furlanetto, R. H.
    Cezar, E.
    Nepomuceno, A. L.
    Farias, J. R. B.
    PRECISION AGRICULTURE, 2022, 23 (03) : 1093 - 1123
  • [24] A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data
    Jonsson, Per
    Cai, Zhanzhang
    Melaas, Eli
    Friedl, Mark A.
    Eklundh, Lars
    REMOTE SENSING, 2018, 10 (04)
  • [25] Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network
    Yli-Heikkila, Maria
    Wittke, Samantha
    Luotamo, Markku
    Puttonen, Eetu
    Sulkava, Mika
    Pellikka, Petri
    Heiskanen, Janne
    Klami, Arto
    REMOTE SENSING, 2022, 14 (17)
  • [26] Time-series analysis of Sentinel-2 satellite images for sunflower yield estimation
    Amankulova, Khilola
    Farmonov, Nizom
    Mucsi, Laszlo
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [27] Combining Sentinel-2 data with an optical-trapezoid approach to infer within-field soil moisture variability and monitor agricultural production stages
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    AGRICULTURAL WATER MANAGEMENT, 2022, 274
  • [28] Within-field wheat yield prediction from IKONOS data: a new matrix approach
    Enclona, EA
    Thenkabail, PS
    Celis, D
    Diekmann, J
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (02) : 377 - 388
  • [29] Mapping abandoned cropland using Within-Year Sentinel-2 time series
    Liu, Bo
    Song, Wei
    CATENA, 2023, 223
  • [30] Assessing the Within-Field Heterogeneity Using Rapid-Eye NDVI Time Series Data
    Mohr, Jasper
    Tewes, Andreas
    Ahrends, Hella
    Gaiser, Thomas
    AGRICULTURE-BASEL, 2023, 13 (05):