Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels

被引:23
|
作者
Yang, Ruxue [1 ]
Tu, Zhantong [1 ]
Chen, Xiyue [1 ]
Wu, Xin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
关键词
Mesh-structured hydrogels; Wearable strain sensors; Sensitivity; Direct ink writing;
D O I
10.1016/j.cej.2023.148228
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the rapid development of wearable electronic devices, flexible sensors, as the core components of wearable devices, have received extensive attention. Manufacturing of the strain sensors with excellent mechanical properties, wide working range, and high sensitivity is crucial for the development of wearable devices. Herein, for the first time we proposed a strategy based on mesh-structured conductive hydrogel to sensitively detect the body movement in a large workable strain ranges, and demonstrated the facile fabrication procedure of the sensors by using a direct ink writing 3D printing technique. Low cost conductive hydrogels were prepared by a simple one-pot method of combining dispersant-free carbon nanocolloids with easily synthesized PVA/TA/PAM. The printing of complex mesh-structured hydrogels was optimized with high fidelity. The strain sensor based on the mesh-structured hydrogel exhibited excellent mechanical properties, of which the maximum failure stress of the honeycomb was 1.28 MPa and the maximum failure tensile strain was 704 %, amazing sensitivity (GF = 32.95 for the tensile strain range of 3.5 %-5%, GF = 21.5 for the tensile strain range of 100 %-120 %), wide detection range, good stability and durability (for 500 tensile cycles, the Delta R/R0 value remained unchanged). In addition, the working mechanism during the stretching process of mesh-structured hydrogels was revealed by combining finite element simulation with microscopic morphology observation. At last, the applications of the mesh-structured hydrogel-based sensors to accurately and reliably detect both subtle physiological signals and large joint movements were soundly demonstrated, endowing the ability of achieving all-round detection of human motion. Our work could provide a universe strategy for fabricating highly ventilated, stretchable, robust, sensitive and wearable strain sensors, which would greatly expand the applications of strain sensors in wearable devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels
    Yang, Ruxue
    Tu, Zhantong
    Chen, Xiyue
    Wu, Xin
    Chemical Engineering Journal, 2024, 480
  • [2] Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors
    Tong, Ruiping
    Chen, Guangxue
    Tian, Junfei
    He, Minghui
    POLYMERS, 2019, 11 (12)
  • [3] Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors
    Zhao, Yusen
    Zhang, Bozhen
    Yao, Bowen
    Qiu, Yu
    Peng, Zihang
    Zhang, Yucheng
    Alsaid, Yousif
    Frenkel, Imri
    Youssef, Kareem
    Pei, Qibing
    He, Ximin
    MATTER, 2020, 3 (04) : 1196 - 1210
  • [4] Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric
    Souri, Hamid
    Bhattacharyya, Debes
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (39) : 10524 - 10531
  • [5] Stretchable, self-adhesive, and conductive hemicellulose-based hydrogels as wearable strain sensors
    Zhao, Lihui
    Luo, Banxin
    Gao, Shishuai
    Liu, Yupeng
    Lai, Chenhuan
    Zhang, Daihui
    Guan, Wenxian
    Wang, Chunpeng
    Chu, Fuxiang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [6] Flexible and wearable strain sensors based on conductive hydrogels
    Zhang, Jiawei
    Zhang, Qin
    Liu, Xin
    Xia, Shan
    Gao, Yang
    Gao, Guanghui
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2663 - 2678
  • [7] A stretchable and zigzag structured hydrogel for highly sensitive strain sensors
    Zou, Jian
    Chen, Zhuo
    Wang, Sheng-Ji
    Mi, Hao-Yang
    Hu, Xiang-Shu
    Zhang, Zhi
    Shang, Ying-Hui
    Jing, Xin
    MATERIALS LETTERS, 2022, 325
  • [8] Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors
    Wu, Xiaodong
    Han, Yangyang
    Zhang, Xinxing
    Lu, Canhui
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) : 23007 - 23016
  • [9] Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors
    Park, Kyuha
    Choi, Heewon
    Kang, Kyumin
    Shin, Mikyung
    Son, Donghee
    GELS, 2022, 8 (02)
  • [10] Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors
    Wang, Zhiwen
    Zhou, Hongwei
    Lai, Jialiang
    Yan, Bo
    Liu, Hanbin
    Jin, Xilang
    Ma, Aijie
    Zhang, Gai
    Zhao, Weifeng
    Chen, Weixing
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (34) : 9200 - 9207