ChurnNet: Deep Learning Enhanced Customer Churn Prediction in Telecommunication Industry

被引:3
|
作者
Saha, Somak [1 ]
Saha, Chamak [1 ]
Haque, Md. Mahidul [1 ]
Alam, Md. Golam Rabiul [1 ]
Talukder, Ashis [2 ]
机构
[1] BRAC Univ, Dept Comp Sci & Engn, Dhaka 1212, Bangladesh
[2] Univ Dhaka, Dept Management Informat Syst, Dhaka 1000, Bangladesh
关键词
Squeeze and excitation; spatial attention; residual block; churn prediction; ChurnNet; LOGISTIC-REGRESSION; MODEL;
D O I
10.1109/ACCESS.2024.3349950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the Telecommunication Industry (TCI) customer churn is a significant issue because the revenue of the service provider is highly dependent on the retention of existing customers. In this competitive market, it is essential for the service providers to figure out the concerns of their existing customers regarding their services as the cancellation of the services by the customers and switching to new service providers will not bring any good to the service provider. In the context of TCI, numerous research have been made to predict customer churn though, after the performance evaluation of these studies, it shows that there is enough room for progress. Therefore, in this study, we proposed a novel customer churn prediction architecture namely ChurnNet to predict customer churn in TCI. In our proposed ChurnNet, the 1D convolution layer is integrated with residual block, squeeze and excitation block, and spatial attention module to improve the performance. Residual block aids in solving the vanishing gradient problem. Squeeze and excitation block and spatial attention module enable the ChurnNet to understand the interdependency between and within the channels respectively. To evaluate the performance, the experiment is performed on 3 publicly available datasets. As the datasets have significant class imbalance issues, three data balancing techniques such as SMOTE, SMOTEEN, and SMOTETomek are performed. Along with 10-fold cross-validation and after going through the rigorous experiment it was found that ChurnNet performed better than the state-of-the-art and obtained 95.59%, 96.94%, and 97.52% accuracy on 3 benchmark datasets respectively.
引用
收藏
页码:4471 / 4484
页数:14
相关论文
共 50 条
  • [31] Machine Learning for Customer Churn Prediction in Retail Banking
    Dias, Joana
    Godinho, Pedro
    Torres, Pedro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT III, 2020, 12251 : 576 - 589
  • [32] Hybrid ensemble learning approaches to customer churn prediction
    Tavassoli, Sara
    Koosha, Hamidreza
    KYBERNETES, 2022, 51 (03) : 1062 - 1088
  • [33] Machine Learning Models for Customer Churn Risk Prediction
    Akan, Oguzhan
    Verma, Abhishek
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 623 - 628
  • [34] Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods
    Amin, Adnan
    Shah, Babar
    Khattak, Asad Masood
    Lopes Moreira, Fernando Joaquim
    Ali, Gohar
    Rocha, Alvaro
    Anwar, Sajid
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 46 : 304 - 319
  • [35] Deep Convolutional Neural Networks for Customer Churn Prediction Analysis
    Chouiekh, Alae
    Ibn El Haj, El Hassane
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2020, 14 (01) : 1 - 16
  • [36] Particle classification optimization-based BP network for telecommunication customer churn prediction
    Yu, Ruiyun
    An, Xuanmiao
    Jin, Bo
    Shi, Jia
    Move, Oguti Ann
    Liu, Yonghe
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (03) : 707 - 720
  • [37] Predicting Customer Churn in the Telecom Industry Using Data Analytics
    Preetha, S.
    Rayapeddi, Rohit
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 38 - 43
  • [38] Development of Churn Prediction Model using XGBoost - Telecommunication Industry in Sri Lanka
    Senthan, Prasanth
    Rathnayaka, Rmkt
    Kuhaneswaran, Banujan
    Kumara, Btgs
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 520 - 526
  • [39] Predicting Customer Churn in the Telecommunication Industry by Analyzing Phone Call Transcripts with Convolutional Neural Networks
    Zhong, Junmei
    Li, William
    3RD INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE (ICIAI 2019), 2019, : 55 - 59
  • [40] A Hybrid System for Customer Churn Prediction and Retention Analysis via Supervised Learning
    Arshad, Soban
    Iqbal, Khalid
    Naz, Sheneela
    Yasmin, Sadaf
    Rehman, Zobia
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 4283 - 4301