ChurnNet: Deep Learning Enhanced Customer Churn Prediction in Telecommunication Industry

被引:3
|
作者
Saha, Somak [1 ]
Saha, Chamak [1 ]
Haque, Md. Mahidul [1 ]
Alam, Md. Golam Rabiul [1 ]
Talukder, Ashis [2 ]
机构
[1] BRAC Univ, Dept Comp Sci & Engn, Dhaka 1212, Bangladesh
[2] Univ Dhaka, Dept Management Informat Syst, Dhaka 1000, Bangladesh
关键词
Squeeze and excitation; spatial attention; residual block; churn prediction; ChurnNet; LOGISTIC-REGRESSION; MODEL;
D O I
10.1109/ACCESS.2024.3349950
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the Telecommunication Industry (TCI) customer churn is a significant issue because the revenue of the service provider is highly dependent on the retention of existing customers. In this competitive market, it is essential for the service providers to figure out the concerns of their existing customers regarding their services as the cancellation of the services by the customers and switching to new service providers will not bring any good to the service provider. In the context of TCI, numerous research have been made to predict customer churn though, after the performance evaluation of these studies, it shows that there is enough room for progress. Therefore, in this study, we proposed a novel customer churn prediction architecture namely ChurnNet to predict customer churn in TCI. In our proposed ChurnNet, the 1D convolution layer is integrated with residual block, squeeze and excitation block, and spatial attention module to improve the performance. Residual block aids in solving the vanishing gradient problem. Squeeze and excitation block and spatial attention module enable the ChurnNet to understand the interdependency between and within the channels respectively. To evaluate the performance, the experiment is performed on 3 publicly available datasets. As the datasets have significant class imbalance issues, three data balancing techniques such as SMOTE, SMOTEEN, and SMOTETomek are performed. Along with 10-fold cross-validation and after going through the rigorous experiment it was found that ChurnNet performed better than the state-of-the-art and obtained 95.59%, 96.94%, and 97.52% accuracy on 3 benchmark datasets respectively.
引用
收藏
页码:4471 / 4484
页数:14
相关论文
共 50 条
  • [31] Just-in-time customer churn prediction in the telecommunication sector
    Adnan Amin
    Feras Al-Obeidat
    Babar Shah
    May Al Tae
    Changez Khan
    Hamood Ur Rehman Durrani
    Sajid Anwar
    The Journal of Supercomputing, 2020, 76 : 3924 - 3948
  • [32] Supervised Massive Data Analysis for Telecommunication Customer Churn Prediction
    Li, Hui
    Yang, Deliang
    Yang, Lingling
    Lu, Yao
    Lin, Xiaola
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 163 - 169
  • [33] Arithmetic Optimization with Deep Learning Enabled Churn Prediction Model for Telecommunication Industries
    Haridasan, Vani
    Muthukumaran, Kavitha
    Hariharanath, K.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3531 - 3544
  • [34] Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model
    Liu, Yunjie
    Shengdong, Mu
    Jijian, Gu
    Nedjah, Nadia
    MATHEMATICS, 2022, 10 (24)
  • [35] Customer churn prediction using a novel meta-classifier: an investigation on transaction, Telecommunication and customer churn datasets
    Ehsani, Fatemeh
    Hosseini, Monireh
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (01)
  • [36] A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection
    Sana, Joydeb Kumar
    Abedin, Mohammad Zoynul
    Rahman, M. Sohel
    Rahman, M. Saifur
    PLOS ONE, 2022, 17 (12):
  • [37] Enhancing customer retention in telecom industry with machine learning driven churn prediction
    Sikri, Alisha
    Jameel, Roshan
    Idrees, Sheikh Mohammad
    Kaur, Harleen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning
    Coussement, Kristof
    De Bock, Koen W.
    JOURNAL OF BUSINESS RESEARCH, 2013, 66 (09) : 1629 - 1636
  • [39] Customer churn prediction in the telecommunication sector using a rough set approach
    Amin, Adnan
    Anwar, Sajid
    Adnan, Awais
    Nawaz, Muhammad
    Alawfi, Khalid
    Hussain, Amir
    Huang, Kaizhu
    NEUROCOMPUTING, 2017, 237 : 242 - 254
  • [40] A Rule-Based Method for Customer Churn Prediction in Telecommunication Services
    Huang, Ying
    Huang, Bingquan
    Kechadi, M. -T.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 411 - 422