Minimum degree of minimal (n-10)-factor-critical graphs

被引:1
|
作者
Guo, Jing [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Perfect matching; Minimal k -factor-critical graph; Minimum degree; VERTICES; CLOSURE;
D O I
10.1016/j.disc.2023.113839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order n is said to be k-factor-critical for integers 1 <= k < n, if the removal of any k vertices results in a graph with a perfect matching. A k-factor-critical graph G is called minimal if for any edge e is an element of E(G), G - e is not k-factor-critical. In 1998, O. Favaron and M. Shi conjectured that every minimal k-factor-critical graph of order n has minimum degree k + 1 and confirmed it for k =1, n - 2, n - 4 and n - 6. By using a novel approach, we have confirmed it for k = n - 8 in a previous paper. Continuing with this method, we confirm the conjecture when k = n -10 in this paper.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 30 条
  • [1] A MINIMUM DEGREE CONDITION FOR FRACTIONAL ID-[a, b]-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Liu, Hongxia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 177 - 183
  • [2] Closure and factor-critical graphs
    Plummer, MD
    Saito, A
    DISCRETE MATHEMATICS, 2000, 215 (1-3) : 171 - 179
  • [3] Strong product of factor-critical graphs
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2685 - 2696
  • [4] Minimum degree of graphs and (g,f,n)-critical graphs
    Zhou, Sizhong
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1871 - 1873
  • [5] On the Minimum Degree of Minimal Ramsey Graphs
    Szabo, Tibor
    Zumstein, Philipp
    Zuercher, Stefanie
    JOURNAL OF GRAPH THEORY, 2010, 64 (02) : 150 - 164
  • [6] INDEPENDENT-SET-DELETABLE FACTOR-CRITICAL POWER GRAPHS
    原晋江
    Acta Mathematica Scientia, 2006, (04) : 577 - 584
  • [7] Independent-set-deletable factor-critical power graphs
    Yuan Jinjiang
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) : 577 - 584
  • [8] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [9] Independence number and minimum degree for path-factor critical uniform graphs
    Liu, Hongxia
    Pan, Xiaogang
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 153 - 158
  • [10] On the minimum degree of minimal Ramsey graphs for multiple colours
    Fox, Jacob
    Grinshpun, Andrey
    Liebenau, Anita
    Person, Yury
    Szabo, Tibor
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 120 : 64 - 82