Massively parallel profiling of RNA-targeting CRISPR-Cas13d

被引:6
|
作者
Kuo, Hung-Che [1 ,2 ]
Prupes, Joshua [1 ,2 ]
Chou, Chia-Wei [1 ,2 ]
Finkelstein, Ilya J. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
基金
美国国家卫生研究院;
关键词
PROTEIN INTERACTIONS; REPLICATION; KNOCKDOWN; COMPLEX; BINDING; CASRX;
D O I
10.1038/s41467-024-44738-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a systematic understanding of its RNA binding and cleavage specificity is lacking. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform (RNA-CHAMP) for measuring the binding affinity for > 10,000 RNAs containing structural perturbations and other alterations relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d reveals that it does not require a protospacer flanking sequence but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is penalized by mismatches in the distal crRNA-target RNA region, while alterations in the proximal region inhibit nuclease activity. A biophysical model built from these data reveals that target recognition initiates in the distal end of the target RNA. Using this model, we design crRNAs that can differentiate between SARS-CoV-2 variants by modulating nuclease activation. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme.
引用
收藏
页数:13
相关论文
共 40 条
  • [21] Efficient nanoparticle-based CRISPR-Cas13d induced mRNA disruption of an eye pigmentation gene in the white-backed planthopper, Sogatella furcifera
    Ma, Yun-Feng
    Zhang, Meng-Qi
    Gong, Lang-Lang
    Liu, Xuan-Zheng
    Long, Gui-Jun
    Guo, Huan
    Hull, J. Joe
    Dewer, Youssef
    He, Ming
    He, Peng
    INSECT SCIENCE, 2023, 30 (06) : 1552 - 1564
  • [22] A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila
    Nhan Huynh
    Depner, Noah
    Larson, Raegan
    King-Jones, Kirst
    GENOME BIOLOGY, 2020, 21 (01)
  • [23] A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila
    Nhan Huynh
    Noah Depner
    Raegan Larson
    Kirst King-Jones
    Genome Biology, 21
  • [24] CRISPR-Cas13-mediated RNA editing in the silkworm Bombyx mori
    Tang, Yao-Hao
    Zhang, Xing
    Dai, Zong-Cai
    Li, Hao
    Yang, Yan
    Zhao, Tu-Jing
    Yuan, Dong-Qin
    Qian, Wen-Liang
    Cheng, Dao-Jun
    ZOOLOGICAL RESEARCH, 2024, 45 (06) : 1249 - 1260
  • [25] RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes
    East-Seletsky, Alexandra
    O'Connell, Mitchell R.
    Burstein, David
    Knott, Gavin J.
    Doudna, Jennifer A.
    MOLECULAR CELL, 2017, 66 (03) : 373 - +
  • [26] Photoactivatable RNA N6-Methyladenosine Editing with CRISPR-Cas13
    Zhao, Jie
    Li, Bing
    Ma, Jianxiong
    Jin, Weilin
    Ma, Xinlong
    SMALL, 2020, 16 (30)
  • [27] Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System
    Hoang Nguyen
    Wilson, Hannah
    Jayakumar, Sahana
    Kulkarni, Viraj
    Kulkarni, Smita
    VIRUSES-BASEL, 2021, 13 (09):
  • [28] Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites
    Zou, Roger S.
    Marin-Gonzalez, Alberto
    Liu, Yang
    Liu, Hans B.
    Shen, Leo
    Dveirin, Rachel K.
    Luo, Jay X. J.
    Kalhor, Reza
    Ha, Taekjip
    NATURE CELL BIOLOGY, 2022, 24 (09) : 1433 - +
  • [29] Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein
    Wang, Lin
    Zhou, Junhu
    Wang, Qixue
    Wang, Yunfei
    Kang, Chunsheng
    THERANOSTICS, 2021, 11 (02): : 649 - 664
  • [30] Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a
    Swarts, Daan C.
    van der Oost, John
    Jinek, Martin
    MOLECULAR CELL, 2017, 66 (02) : 221 - +