Spectral analysis of a family of nonsymmetric fractional elliptic operators

被引:2
作者
Deng, Quanling [1 ]
Li, Yulong [2 ]
机构
[1] Australian Natl Univ, Sch Comp, Canberra, ACT 2601, Australia
[2] Univ Dayton, Dept Math, 300 Coll Pk, Dayton, OH 45469 USA
关键词
Spectral; Nonsymmetric; Principal eigenvalue; Fractional derivative; Mixed derivative; EQUATIONS;
D O I
10.1007/s13540-023-00219-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the spectral problem {D-a+(alpha) D(b-)(beta)u = lambda u, x is an element of (a, b), u(a) = u(b) = 0, 1 < alpha + beta < 2, where the operators D-a+(alpha) and D-b-(beta) are left- and right-sided Riemann-Liouville derivatives, respectively. These operators are nonlocal and nonsymmetric, however, share certain classic elliptic properties. Compared with classic Sturm-Liouville problems, the most challenging part is to set up the framework for analyzing these nonlocal operators, which requires developing new tools. We prove the existence of the real eigenvalues, find the range for all possible complex eigenvalues, explore the graphs of eigenfunctions, and show numerical findings on the distribution of eigenvalues on the complex plane.
引用
收藏
页码:2874 / 2902
页数:29
相关论文
共 21 条
  • [1] Existence theory for nonlocal boundary value problems involving mixed fractional derivatives
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (06): : 937 - 957
  • [2] Atanackovic T, 2007, FRACT CALC APPL ANAL, V10, P139
  • [3] On a class of differential equations with left and right fractional derivatives
    Atanackovic, T. M.
    Stankovic, B.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (07): : 537 - 546
  • [4] Fractional oscillator equation - Transformation into integral equation and numerical solution
    Blaszczyk, Tomasz
    Ciesielski, Mariusz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 428 - 435
  • [5] Brenner S. C., 2008, The Mathematical Theory of Finite Element Methods
  • [6] Brezis H, 2011, UNIVERSITEXT, P1
  • [7] Ciarlet P.G., 2002, Classics in Applied Mathematics, DOI DOI 10.1137/1.9780898719208
  • [8] Dzhrbashyan M.M., 1970, IZVESTIYA AKAD NAU M, V5, P71
  • [9] Ern A., 2004, THEORY PRACTICE FINI, DOI DOI 10.1007/978-1-4757-4355-5
  • [10] Evans LC, 2010, Partial differential equations, DOI DOI 10.1090/GSM/019