AffecTube - Chrome extension for YouTube video affective annotations

被引:0
|
作者
Kulas, Daniel [1 ]
Wrobel, Michal R. [1 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Ul Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词
Emotion recognition; Dataset; Video annotation;
D O I
10.1016/j.softx.2023.101504
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The shortage of emotion-annotated video datasets suitable for training and validating machine learning models for facial expression-based emotion recognition stems primarily from the significant effort and cost required for manual annotation. In this paper, we present AffecTube as a comprehensive solution that leverages crowdsourcing to annotate videos directly on the YouTube platform, resulting in ready-to-use emotion-annotated datasets. AffecTube provides a low-resource environment with an intuitive interface and customizable options, making it a versatile tool applicable not only to emotion annotation, but also to various video-based behavioral annotation processes. (c) 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 27 条
  • [1] Literature review on video annotations in teacher education
    Cebrian-Robles, Violeta
    Perez-Torregrosa, Ana-Belen
    de la Serna, Manuel Cebrian
    PIXEL-BIT- REVISTA DE MEDIOS Y EDUCACION, 2023, (66): : 31 - 57
  • [2] Learning Physics Through Online Video Annotations
    Marcal, J.
    Borges, M. M.
    Viana, P.
    Carvalho, P.
    EDUCATION IN THE KNOWLEDGE SOCIETY, 2020, 21
  • [3] Cluster Analysis of Learners based on Video Annotations
    Furukawa, Masako
    Yaginuma, Yoshitomo
    Yamada, Tsuneo
    2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018), 2018, : 944 - 945
  • [4] GENERATING COHERENT NATURAL LANGUAGE ANNOTATIONS FOR VIDEO STREAMS
    Khan, Muhammad Usman Ghani
    Zhang, Lei
    Gotoh, Yoshihiko
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2893 - 2896
  • [5] Linking User Generated Video Annotations to the Web of Data
    Hildebrand, Michiel
    van Ossenbruggen, Jacco
    ADVANCES IN MULTIMEDIA MODELING, 2012, 7131 : 693 - 704
  • [6] Affective video recommender systems: A survey
    Wang, Dandan
    Zhao, Xiaoming
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [7] Annotations for streaming video on the Web: system design and usage studies
    Bargeron, D
    Gupta, A
    Grudin, J
    Sanocki, E
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL WORLD WIDE WEB CONFERENCE, 1999, : 61 - 75
  • [8] Annotations for streaming video on the Web: system design and usage studies
    Bargeron, D
    Gupta, A
    Grudin, J
    Sanocki, E
    COMPUTER NETWORKS, 1999, 31 (11-16) : 1139 - 1153
  • [9] Interaction design patterns for spatio-temporal annotations in video learning environments
    Seidel, Niels
    PROCEEDINGS OF THE 20TH EUROPEAN CONFERENCE ON PATTERN LANGUAGES OF PROGRAMS (EUROPLOP 2015), 2015,
  • [10] Linguistic characteristics of reflective states in video annotations under different instructional conditions
    Joksimovic, Srecko
    Dowell, Nia
    Gasevic, Dragan
    Mirriahi, Negin
    Dawson, Shane
    Graesser, Arthur C.
    COMPUTERS IN HUMAN BEHAVIOR, 2019, 96 (211-222) : 211 - 222