Functional knockout of long non-coding RNAs with genome editing

被引:4
作者
Lyu, Qing Rex [1 ,2 ]
Zhang, Shikuan [3 ]
Zhang, Zhe [4 ]
Tang, Zhiyu [1 ]
机构
[1] Chongqing Gen Hosp, Med Res Ctr, Chongqing, Peoples R China
[2] Chongqing Acad Sci & Technol, Chongqing, Peoples R China
[3] Tsinghua Shenzhen Int Grad Sch, Key Lab Hlth Sci & Technol Shenzhen, Shenzhen, Peoples R China
[4] China Japan Friendship Hosp, Dept Chinese Med Gastrointestinal, Beijing 100029, Peoples R China
关键词
long non-coding RNA; CRISPR-Cas9; functional knockout; genome editing; methodology; BINDING-PROTEIN; EXPRESSION; TRANSCRIPTION; CRISPR/CAS9; INTERFERENCE;
D O I
10.3389/fgene.2023.1242129
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
An effective loss-of-function study is necessary to investigate the biological function of long non-coding RNA (lncRNA). Various approaches are available, including RNA silencing, antisense oligos, and CRISPR-based genome editing. CRISPR-based genome editing is the most widely used for inactivating lncRNA function at the genomic level. Knocking out the lncRNA function can be achieved by removing the promoter and the first exon (PE1), introducing pre-termination poly(A) signals, or deleting the entire locus, unlike frameshift strategies used for messenger RNA (mRNA). However, the intricate genomic interplay between lncRNA and neighbor genes makes it challenging to interpret lncRNA function accurately. This article discusses the advantages and disadvantages of each lncRNA knockout method and envisions the potential future directions to facilitate lncRNA functional study.
引用
收藏
页数:8
相关论文
共 69 条
[1]   A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance [J].
Anderson, Douglas M. ;
Anderson, Kelly M. ;
Chang, Chi-Lun ;
Makarewich, Catherine A. ;
Nelson, Benjamin R. ;
McAnally, John R. ;
Kasaragod, Prasad ;
Shelton, John M. ;
Liou, Jen ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
CELL, 2015, 160 (04) :595-606
[2]   Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development [J].
Anderson, Kelly M. ;
Anderson, Douglas M. ;
McAnally, John R. ;
Shelton, John M. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
NATURE, 2016, 539 (7629) :433-436
[3]   Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast [J].
Andric, Vedrana ;
Rougemaille, Mathieu .
NON-CODING RNA, 2021, 7 (02)
[4]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[5]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[6]   DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs [J].
Aparicio-Prat, Estel ;
Arnan, Carme ;
Sala, Ilaria ;
Bosch, Nuria ;
Guigo, Roderic ;
Johnson, Rory .
BMC GENOMICS, 2015, 16
[7]   Therapeutic Antisense Oligonucleotides Are Coming of Age [J].
Bennett, C. Frank .
ANNUAL REVIEW OF MEDICINE, VOL 70, 2019, 70 :307-321
[8]   The molecular principles of gene regulation by Polycomb repressive complexes [J].
Blackledge, Neil P. ;
Klose, Robert J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (12) :815-833
[9]   CTCF, a candidate trans-acting factor for X-inactivation choice [J].
Chao, W ;
Huynh, KD ;
Spencer, RJ ;
Davidow, LS ;
Lee, JT .
SCIENCE, 2002, 295 (5553) :345-347
[10]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823