An 1 V Supply, 740 nW, 8.7 ppm/°C Bandgap Voltage Reference With Segmented Curvature Compensation

被引:7
|
作者
Chi-Wa, U. [1 ,2 ,3 ]
Liu, Cong [1 ,2 ,3 ]
Martins, Rui P. [1 ,2 ,3 ]
Lam, Chi-Seng [1 ,2 ,3 ]
机构
[1] Univ Macau, State Key Lab Analog & Mixed Signal VLSI, Macau 999078, Peoples R China
[2] Univ Macau, Inst Microelect, Macau 999078, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Macau 999078, Peoples R China
关键词
Bandgap reference; segmented curvature compensation; temperature coefficient; REFERENCE CIRCUIT;
D O I
10.1109/TCSI.2023.3301736
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a segmented curvature-compensated bandgap voltage reference (BGR) with low temperature coefficient (TC) and power consumption across a wide temperature range. In this work, we achieve temperature segmentation by comparing voltage instead of current, as in the conventional method, significantly reducing power consumption. Furthermore, we examine the trade-off between TC and power consumption, focusing on optimizing the number of temperature segments. In the core circuit, we utilize a regulated cascode current mirror to minimize channel length modulation induced error existing in the current-based BGR topology. We also introduce a replica structure to prevent oscillation and design comparators with the hysteresis characteristic to address noise influence. The proposed BGR, implemented in 65 nm CMOS, occupies an active area of 0.058 mm(2). Measurement results of 6 chips show that the achieved reference voltage of 431.3 mV under 1 V supply has the best TC of 8.7 ppm/degrees C over a temperature range of -40 degrees C to 90 degrees C, consuming 740 nW at 20 degrees C.
引用
收藏
页码:4755 / 4766
页数:12
相关论文
共 50 条
  • [31] A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference
    Leung, KN
    Mok, PKT
    Leung, CY
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (03) : 561 - 564
  • [32] A 1.6-V 25-μA 5-ppm/°C Curvature-Compensated Bandgap Reference
    Zhou, Ze-Kun
    Shi, Yue
    Huang, Zhi
    Zhu, Pei-Sheng
    Ma, Ying-Qian
    Wang, Yong-Chun
    Chen, Zao
    Ming, Xin
    Zhang, Bo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (04) : 677 - 684
  • [33] A 2.1-ppm/°C Current-Mode CMOS Bandgap Reference with Piecewise Curvature Compensation
    Wang, Ruocheng
    Lu, Wengao
    Niu, Yuze
    Liu, Zhaokai
    Zhao, Meng
    Zhang, Yacong
    Chen, Zhongjian
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 254 - 257
  • [34] Low voltage bandgap reference with closed loop curvature compensation
    Fan Tao
    Du Bo
    Zhang Zheng
    Yuan Guoshun
    JOURNAL OF SEMICONDUCTORS, 2009, 30 (03)
  • [35] Low voltage bandgap reference with closed loop curvature compensation
    范涛
    杜波
    张峥
    袁国顺
    半导体学报, 2009, 30 (03) : 114 - 117
  • [36] A Curvature Compensation Technique for Low-Voltage Bandgap Reference
    Shen, Jie
    Chen, Houpeng
    Ni, Shenglan
    Song, Zhitang
    ENERGIES, 2021, 14 (21)
  • [37] Sub-1 V, 5.5 ppm/°C, High PSRR all CMOS Bandgap Voltage Reference
    Khan, Sadeque Reza
    IETE JOURNAL OF RESEARCH, 2020, 66 (04) : 527 - 532
  • [38] A 1.3 ppm/°C BiCMOS bandgap voltage reference using piecewise-exponential compensation technique
    Xin Ming
    Ying-qian Ma
    Ze-kun Zhou
    Bo Zhang
    Yang Lu
    Analog Integrated Circuits and Signal Processing, 2011, 66 : 171 - 176
  • [39] A 0.5-V Supply, 36 nW Bandgap Reference With 42 ppm/°C Average Temperature Coefficient Within-40 °C to 120 °C
    Chi-Wa, U.
    Zeng, Wen-Liang
    Law, Man-Kay
    Lam, Chi-Seng
    Martins, Rui Paulo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3656 - 3669
  • [40] A 1.3 ppm/°C BiCMOS bandgap voltage reference using piecewise-exponential compensation technique
    Ming, Xin
    Ma, Ying-qian
    Zhou, Ze-kun
    Zhang, Bo
    Lu, Yang
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2011, 66 (02) : 171 - 176