Learning generalized Nash equilibria in monotone games: A hybrid adaptive extremum seeking control approach

被引:5
作者
Krilasevic, Suad [1 ]
Grammatico, Sergio [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
基金
欧洲研究理事会;
关键词
Generalized Nash equilibrium learning; Multi-agent systems; Extremum seeking control; LIE BRACKET APPROXIMATION; EXTRAGRADIENT METHOD; STABILITY;
D O I
10.1016/j.automatica.2023.110931
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we solve the problem of learning a generalized Nash equilibrium (GNE) in merely monotone games. First, we propose a novel continuous semi-decentralized solution algorithm without projections that uses first-order information to compute a GNE with a central coordinator. As the second main contribution, we design a gain adaptation scheme for the previous algorithm in order to alleviate the problem of improper scaling of the cost functions versus the constraints. Third, we propose a data-driven variant of the former algorithm, where each agent estimates their individual pseudogradient via zeroth-order information, namely, measurements of their individual cost function values. Finally, we apply our method to a perturbation amplitude optimization problem in oil extraction engineering.& COPY; 2023 Tu Delft. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 51 条
[1]   Lie bracket approximation-based extremum seeking with vanishing input oscillations [J].
Abdelgalil, Mahmoud ;
Taha, Haithem .
AUTOMATICA, 2021, 133
[2]  
Ariyur K. B., 2003, Real-Time Optimization by Extremum-Seeking Control
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]   Extremum seeking control with attenuated steady-state oscillations [J].
Bhattacharjee, Diganta ;
Subbarao, Kamesh .
AUTOMATICA, 2021, 125
[5]   Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents [J].
Bianchi, Mattia ;
Grammatico, Sergio .
AUTOMATICA, 2021, 129
[6]   The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces [J].
Bot, R., I ;
Csetnek, E. R. ;
Vuong, P. T. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) :49-60
[7]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[8]  
Drr H.-B., 2013, IFAC Proc., V46, P540
[9]   Lie bracket approximation of extremum seeking systems [J].
Duerr, Hans-Bernd ;
Stankovic, Milos S. ;
Ebenbauer, Christian ;
Johansson, Karl Henrik .
AUTOMATICA, 2013, 49 (06) :1538-1552
[10]  
Dürr HB, 2011, IEEE DECIS CONTR P, P4654, DOI 10.1109/CDC.2011.6161102