Reciprocal regulatory balance within the CLEC16A-RNF41 mitophagy complex depends on an intrinsically disordered protein region

被引:2
作者
Gingerich, Morgan A. [1 ,2 ,3 ]
Zhu, Jie [1 ,2 ]
Chai, Biaoxin [1 ,2 ]
Vincent, Michael P. [4 ,5 ]
Xie, Nuli [6 ]
Sidarala, Vaibhav [1 ,2 ]
Kotov, Nicholas A. [6 ]
Sahu, Debashish [7 ]
Klionsky, Daniel J. [8 ,9 ]
Schnell, Santiago [4 ,5 ]
Soleimanpour, Scott A. [1 ,2 ,3 ,4 ,10 ]
机构
[1] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Metab Endocrinol & Diabet, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Program Cellular & Mol Biol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI USA
[6] Univ Michigan, Dept Chem Engn, Ann Arbor, MI USA
[7] Univ Michigan, BioNMR Core Facil, Ann Arbor, MI USA
[8] Univ Michigan, Life Sci Inst, Ann Arbor, MI USA
[9] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI USA
[10] VA Ann Arbor Hlth Care Syst, Med Serv, Endocrinol & Metab Sect, Ann Arbor, MI 48105 USA
关键词
GENOME-WIDE ASSOCIATION; UBIQUITINATION; DEGRADATION; NRDP1; CELL; IDENTIFICATION; STABILITY; AUTOPHAGY; KIAA0350; RNF41;
D O I
10.1016/j.jbc.2023.103057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CLEC16A is an E3 ubiquitin ligase that regulates mito-chondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degrada-tion. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the pres-ence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory bal-ance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.
引用
收藏
页数:14
相关论文
共 65 条
  • [1] Ali M, 2020, METHODS MOL BIOL, V2141, P529, DOI 10.1007/978-1-0716-0524-0_27
  • [2] ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules
    Ashkenazy, Haim
    Abadi, Shiran
    Martz, Eric
    Chay, Ofer
    Mayrose, Itay
    Pupko, Tal
    Ben-Tal, Nir
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W344 - W350
  • [3] The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease
    Babu, M. Madan
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2016, 44 : 1185 - 1200
  • [4] Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
    Bhowmick, Pallab
    Pancsa, Rita
    Guharoy, Mainak
    Tompa, Peter
    [J]. PLOS ONE, 2013, 8 (05):
  • [5] Abundance of intrinsic disorder in protein associated with cardiovascular disease
    Cheng, Yugong
    LeGall, Tanguy
    Oldfield, Christopher J.
    Dunker, A. Keith
    Uversky, Vladimir N.
    [J]. BIOCHEMISTRY, 2006, 45 (35) : 10448 - 10460
  • [6] Pcif1 modulates Pdxl protein stability and pancreatic β cell function and survival in mice
    Claiborn, Kathryn C.
    Sachdeva, Mira M.
    Cannon, Corey E.
    Groff, David N.
    Singer, Jeffrey D.
    Stoffers, Doris A.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (10) : 3713 - 3721
  • [7] Ensembl 2022
    Cunningham, Fiona
    Allen, James E.
    Allen, Jamie
    Alvarez-Jarreta, Jorge
    Amode, M. Ridwan
    Armean, Irina M.
    Austine-Orimoloye, Olanrewaju
    Azov, Andrey G.
    Barnes, If
    Bennett, Ruth
    Berry, Andrew
    Bhai, Jyothish
    Bignell, Alexandra
    Billis, Konstantinos
    Boddu, Sanjay
    Brooks, Lucy
    Charkhchi, Mehrnaz
    Cummins, Carla
    Fioretto, Luca Da Rin
    Davidson, Claire
    Dodiya, Kamalkumar
    Donaldson, Sarah
    El Houdaigui, Bilal
    El Naboulsi, Tamara
    Fatima, Reham
    Giron, Carlos Garcia
    Genez, Thiago
    Martinez, Jose Gonzalez
    Guijarro-Clarke, Cristina
    Gymer, Arthur
    Hardy, Matthew
    Hollis, Zoe
    Hourlier, Thibaut
    Hunt, Toby
    Juettemann, Thomas
    Kaikala, Vinay
    Kay, Mike
    Lavidas, Ilias
    Le, Tuan
    Lemos, Diana
    Marugan, Jose Carlos
    Mohanan, Shamika
    Mushtaq, Aleena
    Naven, Marc
    Ogeh, Denye N.
    Parker, Anne
    Parton, Andrew
    Perry, Malcolm
    Pilizota, Ivana
    Prosovetskaia, Irina
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D988 - D995
  • [8] Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter
    Darling, April L.
    Uversky, Vladimir N.
    [J]. FRONTIERS IN GENETICS, 2018, 9
  • [9] Relating sequence encoded information to form and function of intrinsically disordered proteins
    Das, Rahul K.
    Ruff, Kiersten M.
    Pappu, Rohit V.
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2015, 32 : 102 - 112
  • [10] Unmasking Functional Motifs Within Disordered Regions of Proteins
    Das, Rahul K.
    Mao, Albert H.
    Pappu, Rohit V.
    [J]. SCIENCE SIGNALING, 2012, 5 (220)