Corner-Point and Foreground-Area IoU Loss: Better Localization of Small Objects in Bounding Box Regression

被引:13
作者
Cai, Delong [1 ,2 ]
Zhang, Zhaoyun [1 ]
Zhang, Zhi [1 ]
机构
[1] DongGuan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523000, Peoples R China
[2] DongGuan Univ Technol, Sch Comp Sci & Technol, Dongguan 523000, Peoples R China
关键词
object detection; loss function; small object; bounding box regression;
D O I
10.3390/s23104961
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Bounding box regression is a crucial step in object detection, directly affecting the localization performance of the detected objects. Especially in small object detection, an excellent bounding box regression loss can significantly alleviate the problem of missing small objects. However, there are two major problems with the broad Intersection over Union (IoU) losses, also known as Broad IoU losses (BIoU losses) in bounding box regression: (i) BIoU losses cannot provide more effective fitting information for predicted boxes as they approach the target box, resulting in slow convergence and inaccurate regression results; (ii) most localization loss functions do not fully utilize the spatial information of the target, namely the target's foreground area, during the fitting process. Therefore, this paper proposes the Corner-point and Foreground-area IoU loss (CFIoU loss) function by delving into the potential for bounding box regression losses to overcome these issues. First, we use the normalized corner point distance between the two boxes instead of the normalized center-point distance used in the BIoU losses, which effectively suppresses the problem of BIoU losses degrading to IoU loss when the two boxes are close. Second, we add adaptive target information to the loss function to provide richer target information to optimize the bounding box regression process, especially for small object detection. Finally, we conducted simulation experiments on bounding box regression to validate our hypothesis. At the same time, we conducted quantitative comparisons of the current mainstream BIoU losses and our proposed CFIoU loss on the small object public datasets VisDrone2019 and SODA-D using the latest anchor-based YOLOv5 and anchor-free YOLOv8 object detection algorithms. The experimental results demonstrate that YOLOv5s (+3.12% Recall, +2.73% mAP@0.5, and +1.91% mAP@0.5:0.95) and YOLOv8s (+1.72% Recall and +0.60% mAP@0.5), both incorporating the CFIoU loss, achieved the highest performance improvement on the VisDrone2019 test set. Similarly, YOLOv5s (+6% Recall, +13.08% mAP@0.5, and +14.29% mAP@0.5:0.95) and YOLOv8s (+3.36% Recall, +3.66% mAP@0.5, and +4.05% mAP@0.5:0.95), both incorporating the CFIoU loss, also achieved the highest performance improvement on the SODA-D test set. These results indicate the effectiveness and superiority of the CFIoU loss in small object detection. Additionally, we conducted comparative experiments by fusing the CFIoU loss and the BIoU loss with the SSD algorithm, which is not proficient in small object detection. The experimental results demonstrate that the SSD algorithm incorporating the CFIoU loss achieved the highest improvement in the AP (+5.59%) and AP75 (+5.37%) metrics, indicating that the CFIoU loss can also improve the performance of algorithms that are not proficient in small object detection.
引用
收藏
页数:17
相关论文
共 24 条
[1]  
Bae SH, 2019, AAAI CONF ARTIF INTE, P8094
[2]   Prime Sample Attention in Object Detection [J].
Cao, Yuhang ;
Chen, Kai ;
Loy, Chen Change ;
Lin, Dahua .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11580-11588
[3]   Towards Accurate One-Stage Object Detection with AP-Loss [J].
Chen, Kean ;
Li, Jianguo ;
Lin, Weiyao ;
See, John ;
Wang, Ji ;
Duan, Lingyu ;
Chen, Zhibo ;
He, Changwei ;
Zou, Junni .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5114-5122
[4]  
Cheng G, 2023, Arxiv, DOI arXiv:2207.14096
[5]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[6]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[7]  
github, Ultralytics YOLOv8
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[9]   CornerNet: Detecting Objects as Paired Keypoints [J].
Law, Hei ;
Deng, Jia .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :765-781
[10]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007