Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration

被引:3
|
作者
Sui, Guangdong [1 ,2 ]
Zhang, Xiaofan [1 ]
Hou, Shuai [3 ]
Shan, Xiaobiao [1 ,2 ]
Hou, Weijie [4 ]
Li, Jianming [4 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Yangtze River Delta HIT Robot Technol Res Inst, Wuhu 241000, Peoples R China
[3] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
[4] Tianjin Key Lab Micrograv & Hypograv Environm Simu, Tianjin 300301, Peoples R China
关键词
finite element simulation; trapezoidal beam; nonlinear stiffness; quasi-zero-stiffness; low-frequency isolator; PERFORMANCE; METASTRUCTURE;
D O I
10.3390/machines11050512
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a quasi-zero stiffness (QZS) isolator based on an inclined trapezoidal beam to explore its advantages in low-frequency passive vibration isolation. The nonlinear stiffness of the inclined trapezoidal beam due to the buckling effect is investigated through finite element simulation, and a linear positive stiffness spring is connected in parallel to form a QZS isolator with high-static and low-dynamic stiffness performance. The natural frequency of the isolator in the QZS region is simulated and analyzed, and the dynamic response of the QZS isolator under different damping ratios, excitation and load conditions is explored. The prototype of the QZS isolator was manufactured, and a static compression experiment was conducted to obtain its nonlinear stiffness. The dynamic experiment results verify the correctness of the simulation conclusions. The simulation and experimental data demonstrate that the QZS isolator has the characteristics of lower initial isolation frequency compared with the equivalent linear isolator. The proposed QZS isolator has an initial isolation frequency of 2.91 Hz and achieves a 90% isolation efficiency at 7.02 Hz. The proposed QZS isolator has great application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine
    Jin, Guoxin
    Wang, Zhenghao
    Yang, Tianzhi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (06) : 813 - 824
  • [2] Three-magnet-ring quasi-zero stiffness isolator for low-frequency vibration isolation
    Wang, Shang
    Hou, Lei
    Meng, Qingye
    Cui, Gengshuo
    Wang, Xiaodong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2024, 4 (02): : 153 - 170
  • [3] Nonlinear Low Frequency Response Research for a Vibration Isolator with Quasi-Zero Stiffness Characteristic
    Yue Zhang
    Yufeng Mao
    Zhen Wang
    Chengfei Gao
    KSCE Journal of Civil Engineering, 2021, 25 : 1849 - 1856
  • [4] Nonlinear Low Frequency Response Research for a Vibration Isolator with Quasi-Zero Stiffness Characteristic
    Zhang, Yue
    Mao, Yufeng
    Wang, Zhen
    Gao, Chengfei
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (05) : 1849 - 1856
  • [5] A torsion quasi-zero stiffness vibration isolator
    Zhou, Jiaxi
    Xu, Daolin
    Bishop, Steven
    JOURNAL OF SOUND AND VIBRATION, 2015, 338 : 121 - 133
  • [6] A torsion-translational vibration isolator with quasi-zero stiffness
    Zhang, Qianlong
    Xia, Shuyan
    Xu, Daolin
    Peng, Zhike
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1467 - 1488
  • [7] Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator
    Ngoc Yen Phuong Vo
    Thanh Danh Le
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [8] Analysis and optimization of a typical quasi-zero stiffness vibration isolator
    Li, Huan
    Yu, Yang
    Li, Jianchun
    Li, Yancheng
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (03) : 525 - 536
  • [9] Design of hyperbolic quasi-zero stiffness metastructures coupled with nonlinear stiffness for low-frequency vibration isolation
    Zhang, Xiaolong
    Lu, Xuhao
    Li, Changcheng
    Tian, Ruilan
    Chen, Luqi
    Wang, Minghao
    ENGINEERING STRUCTURES, 2024, 312
  • [10] A torsion–translational vibration isolator with quasi-zero stiffness
    Qianlong Zhang
    Shuyan Xia
    Daolin Xu
    Zhike Peng
    Nonlinear Dynamics, 2020, 99 : 1467 - 1488