Layer-wise Knowledge Distillation for Cross-Device Federated Learning

被引:5
作者
Le, Huy Q. [1 ]
Nguyen, Loc X. [1 ]
Park, Seong-Bae [1 ]
Hong, Choong Seon [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 17104, South Korea
来源
2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN | 2023年
基金
新加坡国家研究基金会;
关键词
Federated Learning; Knowledge Distillation;
D O I
10.1109/ICOIN56518.2023.10049011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) has been proposed as a decentralized machine learning system where multiple clients jointly train the model without sharing private data. In FL, the statistical heterogeneity among devices has become a crucial challenge, which can cause degradation in generalization performance. Previous FL approaches have proven that leveraging the proximal regularization at the local training process can alleviate the divergence of parameter aggregation from biased local models. In this work, to address the heterogeneity issues in conventional FL, we propose a layer-wise knowledge distillation method in federated learning, namely, FedLKD, which regularizes the local training step via the knowledge distillation scheme between global and local models utilizing the small proxy dataset. Hence, FedLKD deploys the layer-wise knowledge distillation of the multiple devices and the global server as the clients' regularized loss function. A layer-wise knowledge distillation mechanism is introduced to update the local model to exploit the common representation from different layers. Through extensive experiments, we demonstrate that FedLKD outperforms the vanilla FedAvg and FedProx on three federated datasets.
引用
收藏
页码:526 / 529
页数:4
相关论文
共 17 条
[1]  
Dinh CT, 2020, ADV NEUR IN, V33
[2]  
Hinton G., NIPS 2014 DEEP LEARN, DOI [10.48550/arXiv.1503.02531, DOI 10.48550/ARXIV.1503.02531]
[3]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[4]   Secure, privacy-preserving and federated machine learning in medical imaging [J].
Kaissis, Georgios A. ;
Makowski, Marcus R. ;
Ruckert, Daniel ;
Braren, Rickmer F. .
NATURE MACHINE INTELLIGENCE, 2020, 2 (06) :305-311
[5]  
Krizhevsky A., 2009, The cifar-10 dataset
[6]  
Kullback S., 1997, INFORM THEORY STAT
[7]  
Le HQ, 2024, Arxiv, DOI arXiv:2204.01542
[8]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[9]  
Li DL, 2019, Arxiv, DOI arXiv:1910.03581
[10]   Model-Contrastive Federated Learning [J].
Li, Qinbin ;
He, Bingsheng ;
Song, Dawn .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10708-10717