New insights into the critical role of inactive element substitution in improving the rate performance of sodium oxide cathode material

被引:50
作者
Hou, Ying [1 ,2 ]
Jin, Junteng [2 ,3 ]
Huo, Chuanrui [2 ,3 ]
Liu, Yongchang [1 ,2 ,4 ]
Deng, Shiqing [1 ,2 ]
Chen, Jun [2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China
[4] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sodium -ion batteries; Cathode; Charge compensation mechanisms; Rate performance; OXYGEN REDOX CHEMISTRY; LAYERED CATHODE; ION BATTERIES; ANIONIC REDOX; LITHIUM; NA2/3NI1/3MN2/3O2; CAPACITY; VOLTAGE;
D O I
10.1016/j.ensm.2023.01.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In layered oxide cathodes of sodium-ion batteries, electrochemically inactive element substitution, especially into the sodium layer, has emerged to be an effective strategy for structural stabilization and performance improvement. However, the underlying mechanism for how these inactive elements function remains elusive and controversial. Herein, based on the systematic study of a series of P2-Na0.84Mn0.67Ni0.3-xMgx0.03O2 cathodes with different Mg doping concentrations, we achieve a superior rate and cycling performance and more importantly unravel the underlying mechanism. Specifically, two opposite sides of the roles of inactive Mg dopants in the sodium layer are unambiguously clarified, which include the beneficial structural stabilizing effect, and the detrimental sodium-ion diffusion blocking effect, as confirmed by combining advanced electron microscopy, in -situ X-ray diffraction with detailed electrochemical measurements. Wherein, an optimal balance of these two kinds of effects reaches superior comprehensive performances in the Na0.84Mn0.67Ni0.2Mg0.10.03O2 cathode, including surpassing rate (156.5 and 71.0 mAh g-1 at 0.1 and 20 C, respectively) and cycling perfor-mances (98.3% capacity retention after 50 cycles at 0.1 C). This study gives new insight into the roles of inactive element substitution in general, which could provide new perspectives on the material design and new oppor-tunities for the property improvement of sodium oxide cathodes.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 57 条
[21]   Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co2+/Co3+ Redox and Sodium-Site Doping for Layered Cathode Materials [J].
Li, Xun-Lu ;
Bao, Jian ;
Shadike, Zulipiya ;
Wang, Qin-Chao ;
Yang, Xiao-Qing ;
Zhou, Yong-Ning ;
Sun, Dalin ;
Fang, Fang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (40) :22026-22034
[22]   Whole-Voltage-Range Oxygen Redox in P2-Layered Cathode Materials for Sodium-Ion Batteries [J].
Li, Xun-Lu ;
Wang, Tian ;
Yuan, Yifei ;
Yue, Xin-Yang ;
Wang, Qin-Chao ;
Wang, Jun-Yang ;
Zhong, Jun ;
Lin, Ruo-Qian ;
Yao, Yuan ;
Wu, Xiao-Jing ;
Yu, Xi-Qian ;
Fu, Zheng-Wen ;
Xia, Yong-Yao ;
Yang, Xiao-Qing ;
Liu, Tongchao ;
Amine, Khalil ;
Shadike, Zulipiya ;
Zhou, Yong-Ning ;
Lu, Jun .
ADVANCED MATERIALS, 2021, 33 (13)
[23]   Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs [J].
Li, Zheng-Yao ;
Wang, Huibo ;
Yang, Wenyun ;
Yang, Jinbo ;
Zheng, Lirong ;
Chen, Dongfeng ;
Sun, Kai ;
Han, Songbai ;
Liu, Xiangfeng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :1707-1718
[24]   New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer [J].
Li, Zheng-Yao ;
Gao, Rui ;
Zhang, Jicheng ;
Zhang, Xiuling ;
Hu, Zhongbo ;
Liu, Xiangfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) :3453-3461
[25]   Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification [J].
Liu, Yihang ;
Fang, Xin ;
Zhang, Anyi ;
Shen, Chenfei ;
Liu, Qingzhou ;
Enaya, Hani A. ;
Zhou, Chongwu .
NANO ENERGY, 2016, 27 :27-34
[26]   Hierarchical Engineering of Porous P2-Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium-Ion Storage Cathodes [J].
Liu, Yongchang ;
Shen, Qiuyu ;
Zhao, Xudong ;
Zhang, Jian ;
Liu, Xiaobin ;
Wang, Tianshi ;
Zhang, Ning ;
Jiao, Lifang ;
Chen, Jun ;
Fan, Li-Zhen .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
[27]   In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2 [J].
Lu, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (11) :A1225-A1229
[28]   Electrochemical Properties of Monoclinic NaMnO2 [J].
Ma, Xiaohua ;
Chen, Hailong ;
Ceder, Gerbrand .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1307-A1312
[29]   VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data [J].
Momma, Koichi ;
Izumi, Fujio .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2011, 44 :1272-1276
[30]   Dual-Manipulation on P2-Na0.67Ni0.33Mn0.67O2 Layered Cathode toward Sodium-Ion Full Cell with Record Operating Voltage Beyond 3.5 V [J].
Peng, Bo ;
Sun, Zhihao ;
Zhao, Liping ;
Li, Jie ;
Zhang, Genqiang .
ENERGY STORAGE MATERIALS, 2021, 35 (620-629) :620-629