Surfactant-assisted hydrothermal synthesis of CoMn2O4 nanostructures for efficient supercapacitors

被引:12
作者
Nagaraja, Pernapati [1 ,2 ,3 ]
Pamidi, Venkat [4 ,5 ]
Umeshbabu, Ediga [5 ]
Anirudh, T. [4 ]
Rao, H. Seshagiri [1 ,2 ,3 ]
Rao, G. Ranga [1 ,2 ]
Justin, Ponniah [3 ]
机构
[1] Indian Inst Technol Madras, Dept Chem, Chennai 600036, India
[2] Indian Inst Technol Madras, DST Solar Energy Harnessing Ctr, Chennai 600036, India
[3] Rajiv Gandhi Univ Knowledge Technol, Dept Chem, Kadapa 516330, Andhra Pradesh, India
[4] Rajiv Gandhi Univ Knowledge Technol, Dept Met & Mat Engn, Kadapa 516330, Andhra Pradesh, India
[5] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
关键词
IN-SITU FABRICATION; ELECTRODE MATERIAL; NI-FOAM; ELECTROCHEMICAL PERFORMANCE; NICKEL COBALTITE; NANOSHEET ARRAYS; FACILE SYNTHESIS; ENERGY-STORAGE; URCHIN; MICROSPHERES;
D O I
10.1007/s10008-022-05371-z
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Mixed transition metal oxides/spinels are excellent energy storage electrode materials that can deliver sizeable specific capacitance, excellent cyclic stability, and good rate capability than their single metal oxide analogues. Synthetic methods and strategies greatly influence materials' structure, morphology, and functionality. Among several strategies employed to improve the capacitance of metal oxides, the addition of surfactant is one of the simple strategies that help profoundly increase the electrode material's surface area/active sites. This study prepared a tetragonal spinel CoMn2O4 material using a simple hydrothermal approach by a surfactant, polyvinylpyrrolidone (PVP)-based morphological strategy. Electrochemical techniques such as cyclic voltammetry (CV) and galvanostatic charge/discharge cycling (GCD) were used to investigate the active material's energy storage properties. The structural and morphological properties were studied using XRD, SEM, and TEM techniques. The obtained CoMn2O4 material has unique and beautiful Indian borage shrub-like morphology. The unique morphology of CoMn2O4 material provided excellent electrochemical properties by virtue of its enhanced physicochemical properties like pore size distribution, increased surface area, and many active sites for electrolyte ions that incurred large specific and areal capacitances. Further, the significant structural integrity provides extended cycling stability (similar to 116% capacity retention) with high Coulombic efficiency of similar to 98% even after 6000 cycles without any dwindle in capacitance value. These fascinating features make CoMn2O4 a promising and optimistic pseudocapacitive electrode material.
引用
收藏
页码:785 / 796
页数:12
相关论文
共 46 条
[1]   Chimie douce derived Nickelt Cobalt oxynitride as electrode material for high energy density supercapacitors [J].
Aparna, M. L. ;
Rao, G. Ranga ;
Thomas, Tiju .
ELECTROCHIMICA ACTA, 2022, 418
[2]   Battery-like supercapacitive behavior of urchin-shaped NiCo2O4 and comparison with NiCo2X4 (X = S, Se, Te) [J].
Aparna, M. L. ;
Thomas, Tiju ;
Rao, G. Ranga .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
[3]   Activated carbon with exceptionally high surface area and tailored nanoporosity obtained from natural anthracite and its use in supercapacitors [J].
Boujibar, Ouassim ;
Ghamouss, Fouad ;
Ghosh, Arunabh ;
Achak, Ouafae ;
Chafik, Tarik .
JOURNAL OF POWER SOURCES, 2019, 436
[4]   Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors [J].
Chen, Lei ;
Xu, Xingtao ;
Wan, Lijia ;
Zhu, Guang ;
Li, Yanjiang ;
Lu, Ting ;
Albaqami, Munirah D. ;
Pan, Likun ;
Yamauchi, Yusuke .
MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (08) :3480-3488
[5]   Porous CoMn2O4 microspheres as advanced pseudocapacitive materials [J].
Cheng, Jinbing ;
Liu, Xianming ;
Lu, Yang ;
Hou, Xiaoyi ;
Han, Lei ;
Yan, Hailong ;
Xu, Jinyou ;
Luo, Yongsong .
MATERIALS LETTERS, 2016, 165 :231-234
[6]   Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors [J].
Du, Hongmei ;
Jiao, Lifang ;
Wang, Qinghong ;
Yang, Jiaqin ;
Guo, Lijing ;
Si, Yuchang ;
Wang, Yijing ;
Yuan, Huatang .
NANO RESEARCH, 2013, 6 (02) :87-98
[7]   Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials [J].
Fleischmann, Simon ;
Mitchell, James B. ;
Wang, Ruocun ;
Zhan, Cheng ;
Jiang, De-en ;
Presser, Volker ;
Augustyn, Veronica .
CHEMICAL REVIEWS, 2020, 120 (14) :6738-6782
[8]   Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode [J].
Fu Yunyun ;
Lu Xu ;
Zhao Wankun ;
Zhang Yuxuan ;
Yang Yunhan ;
Quan Honglin ;
Xu Xuetang ;
Wang Fan .
APPLIED SURFACE SCIENCE, 2015, 357 :2013-2021
[9]   Energy Storage in Nanomaterials - Capacitive Pseudocapacitive, or Battery-like? [J].
Gogotsi, Yury ;
Penner, Reginald M. .
ACS NANO, 2018, 12 (03) :2081-2083
[10]   Review on supercapacitors: Technologies and materials [J].
Gonzalez, Ander ;
Goikolea, Eider ;
Andoni Barrena, Jon ;
Mysyk, Roman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 58 :1189-1206