L1 Convergence of Fourier Transforms Revisited

被引:0
作者
Liflyand, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Trigonometric series; Fourier transform; bounded variation; integrability; L-1; convergence;
D O I
10.1007/s00025-022-01782-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author's recent attempt to generalize the problem of L-1 convergence of trigonometric series to the non-periodic case is finalized here. It can now be said that any known condition which guarantees integrability of the Fourier transform of a function of bounded variation also leads to the L-1 convergence of its partial integrals provided that a universal necessary and sufficient condition is added.
引用
收藏
页数:14
相关论文
共 19 条
[1]  
Alexits G., 1961, CONVERGENCE PROBLEMS
[2]   The Banach algebra A(*) and its properties [J].
Belinskii, ES ;
Liflyand, ER ;
Trigub, RM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (02) :103-129
[3]  
BELOV AS, 2008, J MATH SCI, V155, P5, DOI DOI 10.1007/S10958-008-9204-2
[4]   ON THE SPECTRAL SYNTHESIS OF BOUNDED FUNCTIONS [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :225-238
[5]  
BORWEIN D, 1965, J LONDON MATH SOC, V40, P628
[6]   CLASS OF TRIGONOMETRIC SERIES [J].
FOMIN, GA .
MATHEMATICAL NOTES, 1978, 23 (1-2) :117-123
[7]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[8]  
Giang D.V., 1996, J AUST MATH SOC SER, V60, P405
[9]  
Iosevich A., 2014, Decay of the Fourier Transform: Analytic and Geometric Aspects
[10]   The convolution algebra H1(R) [J].
Johnson, R. L. ;
Warner, C. R. .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2010, 8 (02) :167-179