Using Deep Learning for Glacier Thickness Estimation at a Regional Scale

被引:3
作者
Uroz, Lorenzo Lopez [1 ]
Yan, Yajing [1 ]
Benoit, Alexandre [1 ]
Rabatel, Antoine [2 ]
Giffard-Roisin, Sophie [3 ]
Lin-Kwong-Chon, Christophe [1 ]
机构
[1] Univ Savoie Mont Blanc, Lab Informat Syst Traitement Informat & Connaissan, F-74944 Annecy Le Vieux, France
[2] Univ Grenoble Alpes, Inst Geosci Environm IGE, CNRS, IRD,INRAE,Grenoble INP, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, Inst Sci Terre ISTerre, IRD, F-38058 Grenoble, France
关键词
Deep learning; glacier flow velocity; ice thickness; neural network; regional scale; surface slope; NEURAL-NETWORKS; INVERSE PROBLEMS; MASS-BALANCE;
D O I
10.1109/LGRS.2024.3353575
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mountain glaciers play a critical role for mountain ecosystems and society with major concerns related to their future evolution and related water resources. Modeling glacier future evolution allows anticipating climate change impacts and informing policy decisions. It relies on accurate ice thickness estimation at regional scales. This letter proposes a deep learning-based approach in a supervised learning framework for ice thickness estimation at a regional scale from surface ice velocity measurements and a digital elevation model (DEM). A neural network model built upon a ResNet architecture is proposed based on the trade-off between the model complexity and the prediction efficiency. Promising results are obtained from data including 1400 glaciers in the Swiss Alps, highlighting the potential of deep learning-based approach for large-scale ice thickness estimation. The incorporation of expert's knowledge into the neural network model further helps refine the model prediction and improve the model relevance. The ice volume difference between the reference issued from ground penetrating radar (GPR) measurements and the predictions by the proposed neural network model varies between 0.5% and 16% of the reference volume. Larger ice volume difference is mainly related to over-deepening of the bedrock resulting from past larger extent of the glacier, which information is not included in the data.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 19 条
[1]   From Doktor Kurowski's Schneegrenze to our modern glacier equilibrium line altitude (ELA) [J].
Braithwaite, R. J. .
CRYOSPHERE, 2015, 9 (06) :2135-2148
[2]   Neural Networks Applied to Estimating Subglacial Topography and Glacier Volume [J].
Clarke, Garry K. C. ;
Berthier, Etienne ;
Schoof, Christian G. ;
Jarosch, Alexander H. .
JOURNAL OF CLIMATE, 2009, 22 (08) :2146-2160
[3]  
Cuffey K.M., 2010, The Physics of Glaciers
[4]   A consensus estimate for the ice thickness distribution of all glaciers on Earth [J].
Farinotti, Daniel ;
Huss, Matthias ;
Fuerst, Johannes J. ;
Landmann, Johannes ;
Machguth, Horst ;
Maussion, Fabien ;
Pandit, Ankur .
NATURE GEOSCIENCE, 2019, 12 (03) :168-+
[5]   How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment [J].
Farinotti, Daniel ;
Brinkerhoff, Douglas J. ;
Clarke, Garry K. C. ;
Fuerst, Johannes J. ;
Frey, Holger ;
Gantayat, Prateek ;
Gillet-Chaulet, Fabien ;
Girard, Claire ;
Huss, Matthias ;
Leclercq, Paul W. ;
Linsbauer, Andreas ;
Machguth, Horst ;
Martin, Carlos ;
Maussion, Fabien ;
Morlighem, Mathieu ;
Mosbeux, Cyrille ;
Pandit, Ankur ;
Portmann, Andrea ;
Rabatel, Antoine ;
Ramsankaran, Raaj ;
Reerink, Thomas J. ;
Sanchez, Olivier ;
Stentoft, Peter A. ;
Kumari, Sangita Singh ;
van Pelt, Ward J. J. ;
Anderson, Brian ;
Benham, Toby ;
Binder, Daniel ;
Dowdeswell, Julian A. ;
Fischer, Andrea ;
Helfricht, Kay ;
Kutuzov, Stanislav ;
Lavrentiev, Ivan ;
McNabb, Robert ;
Gudmundsson, G. Hilmar ;
Li, Huilin ;
Andreassen, Liss M. .
CRYOSPHERE, 2017, 11 (02) :949-970
[6]   Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling [J].
Grab, Melchior ;
Mattea, Enrico ;
Bauder, Andreas ;
Huss, Matthias ;
Rabenstein, Lasse ;
Hodel, Elias ;
Linsbauer, Andreas ;
Langhammer, Lisbeth ;
Schmid, Lino ;
Church, Gregory ;
Hellmann, Sebastian ;
Deleze, Kevin ;
Schaer, Philipp ;
Lathion, Patrick ;
Farinotti, Daniel ;
Maurer, Hansruedi .
JOURNAL OF GLACIOLOGY, 2021, 67 (266) :1074-1092
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Inversion of a Stokes glacier flow model emulated by deep learning [J].
Jouvet, Guillaume .
JOURNAL OF GLACIOLOGY, 2023, 69 (273) :13-26
[9]   Deep learning speeds up ice flow modelling by several orders of magnitude [J].
Jouvet, Guillaume ;
Cordonnier, Guillaume ;
Kim, Byungsoo ;
Luthi, Martin ;
Vieli, Andreas ;
Aschwanden, Andy .
JOURNAL OF GLACIOLOGY, 2022, 68 (270) :651-664
[10]  
Kurowski L., 1891, Penck's Geographische Abhandlungen, V5, P119