DUAL-ENERGY CT;
METAL ARTIFACTS;
RECONSTRUCTION;
HEAD;
QUALITY;
PHYSICS;
D O I:
10.1038/s41598-023-50926-3
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) on dental implant artifacts in photon-counting detector computed tomography (PCD-CT) compared to standard reconstructed polychromatic images (PI). 30 scans with extensive (>= 5 dental implants) dental implant-associated artifacts were retrospectively analyzed. Scans were acquired during clinical routine on a PCD-CT. VMI were reconstructed for 100-190 keV (10 keV steps) and compared to PI. Artifact extent and assessment of adjacent soft tissue were rated using a 5-point Likert grading scale for qualitative assessment. Quantitative assessment was performed using ROIs in most pronounced hypodense and hyperdense artifacts, artifact-impaired soft tissue, artifact-free fat and muscle tissue. A corrected attenuation was calculated as difference between artifact-impaired tissue and tissue without artifacts. Qualitative assessment of soft palate and cheeks improved for all VMI compared to PI (Median PI: 1 (Range: 1-3) and 1 (1-3); e.g. VMI130 keV 2 (1-5); p < 0.0001 and 2 (1-4); p < 0.0001). In quantitative assessment, VMI130 keV showed best results with a corrected attenuation closest to 0 (PI: 30.48 +/- 98.16; VMI130 keV: - 0.55 +/- 73.38; p = 0.0026). Overall, photon-counting deducted VMI reduce the extent of dental implant-associated artifacts. VMI of 130 keV showed best results and are recommended to support head and neck CT scans.